Искусство схемотехники. Том 1 (Изд.4-е)
Шрифт:
U = Asin(2ft + )
Можно также воспользоваться понятием угловая частота и переписать выражение для синусоидального сигнала в другом виде:
U = Asint,
где — угловая частота в радианах в 1 с.
Если вы вспомните, что = 2f, то все станет на свои места. Основное достоинство синусоидальной функции (а также основная причина столь широкого распространения синусоидальных сигналов) состоит в том, что эта функция является решением целого ряда линейных дифференциальных уравнений, описывающих как физические явления, так и свойства линейных цепей. Линейная цепь обладает следующим свойством: выходной сигнал, порожденный суммой
Частота синусоидальных сигналов, с которыми чаще всего приходится работать, лежит в диапазоне от нескольких герц до нескольких мегагерц. Для получения очень низких частот, от 0,0001 Гц и ниже, достаточно аккуратно построить нужную схему. Получение более высоких частот, например до 2000 МГц, также не вызывает принципиальных трудностей, но для сигналов такой частоты нужны специальные линии передач и специальные приемы передачи. Кроме того, здесь приходится иметь дело с микроволновыми сигналами, для которых не подходят привычные схемы, состоящие из отдельных элементов, соединенных между собой проводами, а нужны специальные волноводы.
1.08. Измерение амплитуды сигналов
Оказывается, амплитуду синусоидального сигнала, а также любого другого сигнала, можно оценивать не только как абсолютное максимальное его значение. Иногда пользуются понятием двойная амплитуда (амплитуда от пика до пика сигнала), которая, как нетрудно догадаться, равна удвоенной амплитуде. Иногда употребляют понятие эффективное значение, которое определяется следующим образом: Uэфф= (1/2)А = 0,101А или 2А/Uэфф = 22 (это соотношение справедливо только для синусоидальных сигналов: для других видов сигналов отношение двойной амплитуды к эффективному значению будет другим). Пусть вас не удивляет, что сигнал часто характеризуется эффективным значением; дело в том, что именно эффективное значение используется для определения мощности. В США напряжение в сети имеет эффективное значение 117 В и частоту 60 Гц. Амплитуда этого напряжения равна 165 В (двойная амплитуда составляет 330 В).
Изменение амплитуды в децибелах. Как сравнить амплитуды двух сигналов? Можно, например, сказать, что сигнал X в два раза больше, чем сигнал Y. Во многих случаях именно так и производят сравнение. Но очень часто подобные отношения достигают миллионов, и тогда удобнее пользоваться логарифмической зависимостью и измерять отношение в децибелах (децибел составляет одну десятую часть бела, но единицей «бел» никогда не пользуются). По определению отношение двух сигналов, выраженное в децибелах, это дБ = 20·lg(A2/A1), где А1и А2 — амплитуды двух сигналов.
Например, если один сигнал имеет амплитуду вдвое большую, чем другой, то отношение первого сигнала ко второму составляет +6 дБ, так как lg2 = 0,3010. Если один сигнал в 10 раз больше другого, то отношение первого ко второму составляет +20 дБ, а если один сигнал в 10 раз меньше другого - то -20 дБ. Отношение мощностей двух сигналов определяется так:
дБ = 10·lg(P2/P1),
где Р1и Р2 — мощности двух сигналов.
Если оба сигнала имеют одну и ту же форму, т. е. представлены синусоидами, то оба способа определения отношения сигналов (через амплитуду и мощность) дают одинаковый результат. Для сравнения сигналов разной формы, например, синусоидального и шумового следует использовать мощность (или эффективные значения).
Хотя децибел служит для определения отношения двух сигналов, иногда эту единицу используют для измерения абсолютного, а не относительного значения амплитуды. Дело в том, что можно взять некоторую эталонную амплитуду и определять любую другую амплитуду в децибелах по отношению к эталонной.
Известно несколько стандартных значений амплитуды, используемых для такого сравнения (эти значения не указываются, но подразумеваются); приведем некоторые из них: а) дБВ — эффективное значение 1 В; б) дБВт — напряжение, соответствующее мощности 1 мВт на некоторой предполагаемой нагрузке, для радиочастот это обычно 50 Ом, для звуковых частот — 600 Ом (напряжение 0 дБВт на этих нагрузках имеет эффективное значение 0,22 В и 0,78 В); в) дБп — небольшой шумовой сигнал, генерируемый резистором при комнатной температуре (об этом более подробно пойдет речь в разд. 7.11).
Помимо перечисленных существуют эталонные сигналы для измерений в других областях. Например, в акустике уровень звукового давления 0 дБ соответствует сигналу, среднее квадратурное давление которого составляет 0,0002 мкбар (1 бар равен 106 дин на квадратный сантиметр или приблизительно 1 атмосфере); в связи уровни определяются в дБС (относительный шум в полосе частот с весовой функцией С). Обращаем ваше внимание на эталонную амплитуду 0 дБ: пользуясь этим значением, не забывайте его оговорить, например «амплитуда 27 дБ относительно эффективного значения 1 В», или в сокращенной форме «27 дБ относительно 1 Вэфф», или пользуйтесь условным обозначением дБВ.
Упражнение 1.11. Отношение двух сигналов составляет: а) 3 дБ, б) 6 дБ, в) 10 дБ, г) 20 дБ. Для каждого случая определите отношение напряжений и мощностей сигналов.
1.09. Другие типы сигналов
Линейно-меняющийся сигнал. Линейно-меняющийся сигнал (показан на рис. 1.18) — это напряжение, возрастающее (или убывающее) с постоянной скоростью. Это напряжение, конечно, не может расти бесконечно. Поэтому обычно такое напряжение имеет вид, показанный на графике рис. 1.19, - напряжение нарастает до конечного значения, или на графике рис. 1.20 — пилообразное напряжение.
Рис. 1.18. Напряжение в виде линейно-меняющегося сигнала.
Рис. 1.19. Ограниченный линейно-меняющийся сигнал.
Рис. 1.20. Пилообразный сигнал.
Треугольный сигнал. Треугольный сигнал приходится «ближайшим родственником» линейно-меняющемуся сигналу; отличие состоит в том, что график треугольного сигнала является симметричным (рис. 1.21).