Искусство схемотехники. Том 1 (Изд.4-е)
Шрифт:
Приведенный пример показывает, что делитель напряжения не может служить хорошей батареей, так как его выходное напряжение существенно уменьшается при подключении нагрузки. Рассмотрим упражнение 1.9. Вам сейчас известно все, что необходимо для того, чтобы точно рассчитать, насколько уменьшится выходное напряжение, если подключить к схеме нагрузку с определенным сопротивлением. Воспользуйтесь эквивалентной схемой, подключите нагрузку и подсчитайте новое выходное напряжение, учитывая, что новая схема представляет собой не что иное, как делитель напряжения (рис. 1.10).
Рис. 1.10.
Упражнение 1.9.
Эквивалентное сопротивление источника и нагрузка схемы. Как мы только что убедились, делитель напряжения, на который подается некоторое постоянное напряжение, эквивалентен некоторому источнику напряжения с последовательно подключенным к нему резистором; например, делитель напряжения 10 кОм-10 кОм, на который подается напряжение от идеальной батарейки напряжением 30 В, в точности эквивалентен идеальной батарейке напряжением 15 В с последовательно подключенным резистором с сопротивлением 5 кОм (рис. 1.11).
Рис. 1.11.
Подключение резистора в качестве нагрузки вызывает падение напряжения на выходе делителя, обусловленное наличием некоторого сопротивления источника (вспомним эквивалентное сопротивление для делителя напряжения, если его выход выступает в качестве источника напряжения). Очень часто это явление нежелательно. Один подход к решению проблемы создания «устойчивого» источника напряжения (называемого «устойчивым» в том смысле, что он не поддается действию нагрузки) состоит в использовании в делителе напряжения резисторов с малыми сопротивлениями. Иногда этот прямой подход оказывается полезным. Однако лучше всего для создания источника напряжения, или как его часто называют, источника питания, использовать активные компоненты, такие, как транзисторы или операционные усилители, которыми мы займемся в гл. 2–4. Этот подход позволяет создать источник напряжения, внутреннее сопротивление которого (или эквивалентное сопротивление) составит миллиомы (тысячные доли ома), при этом не требуются большие токи и не рассеивается значительная мощность, что характерно для низкоомного делителя напряжения с такими же рабочими характеристиками. Кроме того, в активном источнике питания не представляет труда регулировка выходного напряжения. Понятие эквивалентного внутреннего сопротивления применимо ко всем типам источников, а не только к батареям и делителям напряжения. Все источники сигналов (например, генераторы синусоидальных сигналов, усилители и измерительные приборы) обладают эквивалентным внутренним сопротивлением.
Подключение нагрузки, сопротивление которой меньше или даже сравнимо с внутренним сопротивлением, вызывает значительное уменьшение выходного параметра. Нежелательное уменьшение напряжения (или сигнала) разомкнутой цепи за счет подключения нагрузки называется «перегрузкой цепи». В связи с этим следует стремиться к тому, чтобы выполнялось условие Rн >> Rвнутр, так как высокоомная нагрузка оказывает небольшое ослабляющее влияние на источник (рис. 1.12); примеры тому вы встретите в последующих главах.
Рис. 1.12. Сопротивление нагрузки должно быть большим по
Условие высокоомности является обязательным для таких измерительных приборов, как вольтметры и осциллографы. (Есть и исключения из этого общего правила; например, когда речь пойдет о линиях передач на радиочастотах, вы узнаете, что следует «согласовывать импедансы» для предотвращения отражений и потерь энергии.)
Несколько слов о принятых выражениях: часто можно услышать «сопротивление со стороны входа делителя напряжения» или «нагрузка со стороны выхода составляет столько-то ом». Советуем принять эти обороты на вооружение, так как они в понятной форме указывают, где, по отношению к схеме, находится резистор.
Преобразование энергии. Задумайтесь над таким интересным вопросом: каким должно быть сопротивление нагрузки, чтобы при данном сопротивлении источника ей была передана максимальная мощность? (Термины «сопротивление источника», «внутреннее сопротивление» и «эквивалентное сопротивление» относятся к одному и тому же сопротивлению).
Нетрудно заметить, что при выполнении условий Rн = 0 и Rн =
Упражнение 1.10. Докажите, что при выполнении условия Rн = Rи мощность в нагрузке максимальна для данного сопротивления источника. Замечание: пропустите это упражнение, если вы не знаете дифференциального исчисления, и примите на веру, что приведенное здесь утверждение справедливо.
Чтобы приведенный пример не вызвал у вас неправильного впечатления, хотим еще раз подчеркнуть, что обычно схемы проектируют таким образом, чтобы сопротивление нагрузки было значительно больше, чем внутреннее сопротивление источника сигнала, работающего на эту нагрузку.
1.06. Динамическое сопротивление
Часто приходится иметь дело с электронными устройствами, в которых ток I не пропорционален напряжению U; в подобных случаях нет смысла говорить о сопротивлении, так как отношение U/I не является постоянной величиной, независимой от U, а, наоборот, зависит от U. Для подобных устройств полезно знать наклон зависимости U-I (вольт-амперной характеристики). Иными словами, представляет интерес отношение небольшого изменения приложенного напряжения к соответствующему изменению тока через схему: U/I (или dU/dI). Это отношение измеряется в единицах сопротивления (в омах) и во многих расчетах играет роль сопротивления. Оно называется сопротивлением для малых сигналов, дифференциальным сопротивлением, динамическим или инкрементным сопротивлением.