Искусство схемотехники. Том 2 (Изд.4-е)
Шрифт:
hexd = !a & b & c & d & e & !f & g;
hexe = a & !b & !c & d & e & f & g;
hexf = a & !b & !c & !d & e & f & g;
/** Logic Equations **/
D3 = eight # nine # hexa # hexb # hexc # hexd # hexe # hexf;
D2 = four # five # six # seven # hexc # hexd # hexe # hexf;
D1 = two # three # six # seven # hexa # hexb # hexe # hexf;
D0 = one # three # five # seven # nine # hexb # hexd # hexf
Рис. 8.77. Спецификация
Окончательно каждый двоичный выходной бит записывается как сумма (ИЛИ) цифровых переменных, при которых этот бит устанавливается. Мы используем уровни отрицательной логики, потому что 16L8 представляет матрицу И-ИЛИ-НЕ. Этим заканчивается логическая спецификация для языка.
Упражнение 8.29. Проверьте для себя правильность нашей работы, записав некоторые из отображаемых символов, через заданные нами промежуточные переменные zero-next.
Язык CUPL сначала использует определение промежуточных переменных для записи выражений D0-D3 прямо в термах входных переменных a — f, работа, которая подобно ассемблеру PALASM должна исполняться нами изначально. В этом случае логические уравнения представлены в желательной И-ИЛИ-НЕ форме. Однако мы не закончили на этом, так как 16L8 (и все другие комбинационные ПМЛ) допускают не более 7 термов произведений для каждой суммы, тогда как мы имеем 9, 8, 9 и 10 соответственно для выходов D0-D3. Одним решением может быть связывание выхода через вторичный вентиль ИЛИ, для того чтобы получить желательное число термов произведений в сумме.
Эта обычно рассматриваемая форма плоха, так как она удваивает задержки распространения, хотя это не так важно в медленных устройствах, подобных этому. Лучшее решение — произвести логическую минимизацию, используя логическую эквивалентность по формуле Моргана, например.
Мы запускаем минимизатор CUPL, который выдает термы произведений (рис. 8.78).
** Expanded Product Terms **
D0 =>
a & b & c & d & !e & g
# a & b & с & !e & f & g
# a & с & d & !e & f & g
# b & с & !d & !e & !f & !g
# !a & !b & c & d & e & f & g
# a & !b & !c & !d & e & f & g
# !a & b & c & d & e & !f & g
D1 =>
a& !b & !c & e & f & g
# !b & c & d & e & f &g
# a & b & с & !d & e & f & g
# a & b & !c & d & e & !f & g
# a & b & c & d & !e & !f & g
# a & b & с & !d & !e & !f & !g
D2 =>
а & !b & !с & d & е & f
# а & !b & c & d & f & g
# а & !b & !с & е & f & g
# !а & b & с & !d & !е & f & g
# !a & b & c & d & e & !f & g
# !a & !b & !c & d & e & !f & g
# a & b & с & !d & !e & !f & !g
D3 =>
a & b & c & f & g
# a & !b & !c & d & e & f
# a & !b & !c & e & f & g
# !a & !b & c & d & e & f & g
# !a & b & c & d & e & !f & g
# !a & !b & !c & d & e & !f & g
D0.oe => 1
D1.oe => 1
D2.oe => 1
D3.oe => 1
Рис. 8.78. Преобразователь 7-сегментного представления в 16-ричное с минимизированными термами произведения.
Взгляните, все удовлетворяет ограничению «7 произведений». CUPL также рисует для вас карту перемычек (рис. 8.79).
Рис. 8.79. Карта перемычек преобразователя 7-сегментного представления в 16-ричное.
Конечно, вы не программируете ПМЛ так, а используете вместо этого прямую загрузку универсального JEDEC программирующего формата. В этом примере язык CUPL, очевидно, делает трудную задачу простой.
Пример использования языка CUPL для программирования автомата-продавца (последовательная схема). Произвольная машина состояний (разд. 8.18) имеет набор состояний и правил перехода для движения между этими состояниями по каждому фронту синхроимпульса. Правила перехода зависят от текущего состояния и от частной комбинации входных уровней, существующих на следующем фронте. Вы можете соорудить машину состояний на программируемой логике, содержащей регистры, если а) существует достаточное число битов в регистре для представления всех возможных состояний (например, с 4-разрядным регистром вы можете иметь до 16 состояний), и б) существует достаточное число входов и логических вентилей для реализации правил перехода.
Как пример, давайте спроектируем регистровую ПМЛ для диаграммы состояний на рис. 8.80.
Рис. 8.80. Диаграмма состояний торгового автомата.
Это — торговый автомат, предназначенный для выдачи бутылки сладкой шипучей жидкости, когда опущено 25 цент или более. Существует некоторый вид монетного интерфейса, который «заглатывает», распознает монету и посылает на наш ПМЛ 2-битовый входной сигнал (С1, С0), действительный для одного такта, показывающего монету, которую опустили (01-5 цент, 10–10 — цент монета, 11–25 — цент монета, 00 — нет монеты). Задача машины состояний добавлять к общему вкладу и формировать выход, называемый «бутылка», когда опущено достаточно монет. Рис. 8.81 показывает спецификацию, выполненную в синтаксисе машины состояний языка CUPL.