Искусство схемотехники. Том 3 (Изд.4-е)
Шрифт:
Из-за своего свойства сильно изменять сопротивление в зависимости от температуры термисторы не предъявляют высоких требований к последующим электрическим схемам. Некоторые из простых методов получения выходного напряжения показаны на рис. 15.4.
Рис. 15.4. Схемы
Схема а особенно эффективна при измерениях низких температур, так как сопротивление термистора изменяется по экспоненциальному закону, а схема б имеет несколько более линейный характер изменения выходного напряжения в зависимости от температуры. Например, на рис. 15.5 приведены зависимости сопротивления от температуры одного термистора 10 кОм (Fenwal UUA41J1, унифицированная кривая) и того же термистора с включенным последовательно сопротивлением 10 кОм.
Рис. 15.5. Зависимость сопротивления от температуры для термистора и термисторно-резисторной пары.
Последовательная пара имеет линейную характеристику в пределах 3 % в области от -10 до +50 °C и 1 % от 0 до +45 °C. Такую линейность имеет зависимость выходного напряжения от температуры в схеме с сопротивлением R, изображенной на рис. 15.4, б.
На схемах в и г рис. 15.4 приведены варианты с улучшенной линейностью, в которых использованы составные согласованные термисторы (и соответствующие резисторные пары), изготовляемые Yellow Springs Instrument Company. Эти 2-термисторные конфигурации обеспечивают линейность 0,2 % в области температур от 0 до 100 °C. YSI также выпускает 3-термисторные модули (с тремя резисторами), имеющие еще лучшие показатели линейности. Схема д представляет собой классический мост Уитстона, уравновешенный при RT/R2 = R1/R3; поскольку здесь измеряются отношения, нельзя не учитывать отклонений, связанных с изменениями напряжения питания.
Мостовая схема в сочетании с усилителем, обладающим высоким коэффициентом усиления, особенно широко используется для определения небольших изменений вблизи некоторой опорной температуры; при малых отклонениях выходное (дифференциальное) напряжение линейно зависит от величины разбаланса. Во всех термисторных схемах надо учитывать явления саморазогрева. Обычные небольшие термисторные зонды имеют коэффициент рассеяния, равный 1 мВт/°С,
В свободную продажу поступает комплект приборов для измерения температур, использующих термисторы с подходящими характеристиками. Эти устройства включают в себя встроенные вычислительные схемы для преобразования считываемого сопротивления непосредственно в данные о температуре. Например, модель цифрового термометра 5800 фирмы Omega перекрывает область от —30 до +100 °C, причем считывание температуры возможно как по стоградусной шкале Цельсия, так и по шкале Фаренгейта на 4-цифровом СИД-индикаторе. Точность термометра во всей области 0,5 °C с разрешением 0,1 °C.
Термисторный метод измерения по сравнению с другими проще и точнее, но термисторы чувствительны к саморазогреву, хрупки и пригодны для узкой области температур.
Платиновые термометры сопротивления. Эти устройства представляют собой катушку из очень чистой платиновой проволоки с положительным температурным коэффициентом сопротивления, равным приблизительно 0,4 %/°С. Платиновые термометры чрезвычайно стабильны во времени и имеют кривую, очень точно (0,02-0,2 °C) совпадающую со стандартной. С ними можно работать в весьма широкой области температур от —200 до +1000 °C, но стоимость их высока.
ИС-датчики температуры. Как мы уже отмечали в разд. 6.15, смещение шкалы от источника опорного напряжения можно получить от датчика температуры, дающего напряжение, пропорциональное абсолютной шкале, т. е. напряжение, пропорциональное температуре по шкале Цельсия. REF-02, например, обеспечивает температурный выход с линейным коэффициентом +2,1 мВ/°С. Если этот выход подключить к усилителю с регулируемым усилением и смещением для калибровки, то можно получить точность почти 0,5 °C для интервала от —55 до +125 °C.
LM335 — удобный 2-клеммный температурный датчик, который в принципе подобен зенеровскому диоду с выходным напряжением +10 мВ/К; например, при 25 °C (298,2 К) он работает как стабилитрон на 2,982 В (рис. 15.6).
Рис. 15.6. ИС-датчики температуры. Напряжения соответствуют 25 °C. Способы а и б приводят, кроме того, к ошибке 1 % для температурного коэффициента резистора 33·10– 6 1/°С.
Выпускаются эти датчики с начальной точностью ±1 °C и имеют внешнюю подстройку. Простой калибровкой можно обычно улучшить его точность до ±0,5 °C максимально в области —55 °C — +125 °C. После подстройки точность выхода должна быть 0,1 °C при тестовой температуре и с бюджетом точности на краях ±0,5 °C (рис. 15.7).
Рис. 15.7. Погрешности температуры для LM335.