Искусство схемотехники. Том 3 (Изд.4-е)
Шрифт:
LM35 также обеспечивает наклон зависимости выходного напряжения от температуры +10 мВ/°С, но он ведет себя скорее как 3-полюсный опорный источник (а не как 2-клеммный зенеровский диод), в котором питание (+4 : +30 В) подается на третий зажим; внутреннее смещение у него такое, что выходное напряжение равно 0 В при 0 °C. При работе вблизи или ниже 0 °C следует использовать понижающий резистор, как показано на рис. 15.6, г. Наилучшие приборы (LM35A) имеют максимальную погрешность 0,5 °C, но они не подстраиваемые.
Родственное им устройство LM34A работает также, но считывание осуществляется по шкале Фаренгейта (0 В при 0°Ф).
Пластиковый вариант AD592 имеет сравнимые характеристики в меньшей температурной области (-25 °C до 105 °C). ИС источника тока LM334 (см. разд. 6.18) также имеет на выходе сигнал, пропорциональный абсолютной температуре, устанавливаемый с помощью одного резистора в соответствии с формулой Jвых (мкА) = [227 Т (°К)]/Rуст(см. рис. 15.6); эта формула включает в себя ~= 5 %-ную коррекцию на U_ ток.
Кварцевые термометры. Изменение резонансной частоты кристалла кварца может быть использовано для создания точного, с хорошей воспроизводимостью, термометра. Хотя реальные генераторы на кристалле кварца обычно имеют самый низкий температурный коэффициент, можно подобрать сечение кристалла, обеспечивающее большой коэффициент, и воспользоваться высокой точностью частотных измерений. Хорошим образцом такого датчика является прибор фирмы Newlett-Packard 2804А — термометр со встроенным микропроцессором, имеющий абсолютную точность 40 мкград в интервале от —50 до +150 °C (при расширении интервала точность уменьшается) и температурное разрешение 100 мкград. Чтобы получить такие характеристики, в приборе предусмотрена индивидуальная калибровка каждого датчика, данные с которого используются для вычисления температуры.
Пирометры и термографы. Интересен метод «бесконтактного» измерения температуры с помощью классического пирометра. Метод заключается в том, что наблюдатель, рассматривая через зрительную трубу вроде телескопа раскаленную поверхность предмета, сравнивает цвет его свечения с цветом нити накала внутри пирометра. При этом наблюдатель подстраивает ток нити накала так, чтобы ее яркость сравнялась с яркостью объекта наблюдения (причем оба рассматриваются через красный светофильтр), и считывает температуру. Этот метод удобен для измерения температуры очень горячих объектов в окислительной или в восстановительной газовой среде, где невозможно использование термопар. Обычные оптические пирометры имеют интервал измеряемых температур от 750 до 3000 °C, точность около 4 °C для нижней части интервала температур и около 20 °C — для верхнего края интервала.
Появление хороших детекторов инфракрасного излучения позволило использовать этот метод измерений и для более низких температур вплоть до обычных. Например, фирма Omega выпускает ряд инфракрасных пирометров с цифровым считыванием в области температур от —30 до +5400 °C. Измеряя интенсивность инфракрасного излучения, иногда с определенными длинами волн, вы можете определять с хорошей точностью температуру удаленных предметов. Такая «термография» с недавнего времени стала популярной
Низкотемпературные измерения. Особое место занимает проблема точного измерения температуры криогенных (очень холодных) систем. Задача сводится к выяснению вопроса, насколько температура близка к абсолютному нулю (0 К = = —273,15 °C). Здесь имеются два пути: измерение сопротивления обычного углеродсодержащего резистора, которое при низких температурах резко возрастает, и измерение парамагнитных свойств некоторых солей. Эти вопросы касаются специальной области измерительной техники и здесь рассматриваться не будут.
Измерения позволяют управлять. Если имеется способ регулировать некоторую количественную величину, то при наличии хорошей измерительной аппаратуры можно точно управлять этой величиной. В частности, термисторы обеспечивают прекрасное управление температурой ванны или печи.
15.02. Уровень излучения
Измерение, синхронизация и наблюдение слабых световых потоков достигли высокого уровня благодаря существованию методов усиления, которые неприменимы в обычной схемотехнике. Фотоумножители, усилители с канальными пластинами, ПЗС (приборы с зарядовой связью) и УУКМ (усилитель + усилитель с кремниевой мишенью) включены в каталог высококачественных оптических детекторов. Мы сначала расскажем о самых простых детекторах (фотодиодах и фототранзисторах), а затем перейдем к экзотическим и удивительным устройствам.
Фотодиоды и фототранзисторы. Диодный переход работает как фотодетектор. Свет создает электронно-дырочные пары и тем самым вызывает ток во внешней цепи. Диоды, используемые в качестве фотодетекторов (фотодиоды и p-i-n– диоды), имеют прозрачный корпус и обладают хорошим быстродействием, высоким КПД, низким уровнем шума и малыми токами утечки. Простейший режим работы фотодиода — это когда он соединен параллельно с сопротивлением нагрузки или со входом преобразователя ток/напряжение, как показано на рис. 15.8.
Рис. 15.8.
Более быстрое срабатывание (при том же фототоке) у обратно-смещенного перехода (рис. 15.9).
Рис. 15.9.
Быстродействующие р-i-n-диоды имеют времена срабатывания несколько наносекунд или меньше (ширина полосы 1 ГГц), если нагружены на низкое сопротивление. Следует отметить, что у хороших р-i-n– диодов ток утечки так мал (меньше наноампер), что тепловые шумы сопротивления нагрузки становятся доминирующими уже при сопротивлениях, меньших или равных 100 МОм, поэтому отношение быстродействие/шум здесь выбирается на основе компромисса. Кроме того, при работе с низкими уровнями светового потока нужно учитывать и ошибки, вызываемые смещением напряжения на входе усилителя или напряжения сдвига в сочетании с «темновым» сопротивлением фотодиода.