Исследования в консервации культурного наследия. Выпуск 3
Шрифт:
Еще 6 радиодатчиков были установлены в октябре 2009 г. Это позволило осуществлять контроль и регистрацию параметров микроклимата основных помещений соборного комплекса, наружного воздуха, а также температуру внутренней поверхности стены.
Таким образом, контроль ТВР соборного комплекса с ноября 2009 г. осуществляется по показаниям 9 радиодатчиков размещенных:
– в алтарной части собора,
– в барабане собора,
– на южной стене собора,
– на западной паперти собора,
– в подклете собора,
– в подклете северной паперти собора,
– в ризнице,
– в ц. Мартиниана,
– снаружи собора (уличный датчик).
С устройством системы появилась возможность сопоставлять
Это позволяет:
– своевременно осуществлять «регулируемое» проветривание в целях нормализации ТВР,
– контролировать посещаемость и влажную уборку,
– регулировать подогрев в зависимости от внешних условий.
Один из самых очевидных результатов внедрения системы контроля – отображение на экране монитора состояния микроклимата помещений соборного комплекса в режиме реального времени.
Использование новой технологии регистрации и сбора информации о ТВР соборного комплекса Музея фресок Дионисия позволяет больше обращать внимания на обработку полученных данных, с большей достоверностью и скоростью осуществлять действия по нормализации микроклимата помещений. Годовой цикл наблюдений с использованием системы позволил объективно оценить результаты применения ограниченного подогрева собора по стабилизации влажностного состояния внутренней поверхности ограждающих конструкций, включая живописный слой.
Литература
1. Сизов Б. Т. Наблюдения за температурно-влажностным режимом собора Рождества Богородицы Ферапонтова монастыря // Реставрация, исследование и хранение музейных художественных ценностей. Реферативный сборник. М., 1982. Вып. 2.
2. Сизов Б. Т. Мониторинг температурно-влажностного режима памятников архитектуры (на примере Рождественского собора Ферапонтова монастыря) // АВОК. 2003. № 2.
3. Фомин И. В., Сизов Б. Т., Петрова Т. Г., Илларионова И. В., Девина Р. А. Система контроля температурно-влажностного режима в Софийском соборе (г. Вологда) // Наука и техника в инновационном подходе к сохранению и реставрации памятников истории и культуры. Материалы международного научно-практического семинара. Москва, февраль 2001 г., Новодевичий монастырь. ЮНЕСКО. М., 2001. С. 19–20.
4. Фомин И. В., Сизов Б. Т., Петрова Т. Г. Внедрение системы контроля температурно-влажностного режима в Софийском соборе и в экспозиционных залах древнерусской живописи Вологодского музея // Москва – энергоэффективный город. Материалы XIX конференции и выставки. Москва, апрель 2003 г. М., 2003.
5. Сизов Б. Т., Фомин И. В. Технико-экономическое обоснование создания многоканальной системы контроля и регистрации параметров микроклимата в помещениях соборного комплекса Ферапонтова монастыря. М., 2003.
Е. М. Шепилова. Перспективы использования наноматериалов для обеспечения сохранности фотодокументов
Фотодокументы являются, пожалуй, одним из самых сложных объектов хранения в силу своей многоуровневой неоднородности, как по способу сохранения информации, так по химическому составу. К фотодокументам относятся отпечатки, т. е. сами фотографии, негативы, позитивы (слайды), как черно-белые, так и цветные. А также цифровые фотодокументы, отпечатки, полученные различными видами современной печати (принтер + специальная бумага). Объединяет их то, что они передают информацию о реально существовавших в конкретный момент времени объектах или процессах и имеют одинаковую структуру строения: основа и светочувствительный слой. Однако разные виды фотодокументов имеют различный
В результате деструкции бумажной и пленочной основы фотодокументов выделяются различные вещества, в том числе уксусный ангидрид и двуокись азота, образующие с водой эмульсионного слоя кислоты и разрушающие тем самым эмульсию, а также катализирующие дальнейшее деструкцию основы. Поэтому следует уделить внимание упаковочным материалам, в которых фотодокументы хранятся, особенно если их нельзя выделить в отдельное хранение [3].
Для обеспечения сохранности фотодокументов разработаны специальные виды бумаги и картона. Это бумага «SILVERSAFE», она изготавливается из чистого хлопка, почти 100 % а-целлюлоза, не содержит соединений серы, хлоридов, лигнина и отбеливателей, имеет рН в.в. 7,0. А также фильтрующие сорбционные бумаги и картоны MicroChamber®, состоящие из следующих слоев:
• наружный поверхностный слой – бумага со щелочным резервом;
• внутренний слой – бумага со щелочным резервом, активированным углем и молекулярным ситом из цеолитов;
• второй поверхностный слой из чистой а-целлюлозы [4].
Как показали исследования зарубежных ученых, наиболее эффективную защиту от вредного воздействия уксусной кислоты, двуокиси азота оказывает бумага MicroChamber®.
Парами уксусной кислоты были обработаны образцы газетной бумаги в конвертах из полиэфирной пленки Milinex: контроль и обернутые бумагой MicroChamber®; с буферным запасом; нейтральной из а-целлюлозы и кислой бумагой. После ускоренного термического старения (трое суток при 100°С) контрольный образец побурел и только образец газетной бумаги, защищенный MicroChamber®, почти не изменил цвет, в отличие от образцов, защищенных нейтральной бумагой или имеющей буферный запас.
Обработка парами двуокиси азота цветной фотографии, частично закрытой бумагой MicroChamber®, и двух идентичных черно-белых негативов, один из которых был обернут бумагой MicroChamber®, а другой – бумагой с буферным запасом из 100 % а-целлюлозы, также продемонстрировали ее защитные свойства. Участок цветной фотографии, защищенный бумагой MicroChamber®, не утратил свои цвета, тогда как незащищенный участок – пожелтел. Негатив, защищенный бумагой MicroChamber®, не пожелтел, тогда как негатив, защищенный бумагой из 100 % а-целлюлозы с буферным запасом, стал желтым [6]. Защитное действие этого материала обусловлено, главным образом, сорбирующими свойствами активированного угля, входящего в его состав. Известно также применение углеродных волокнистых материалов в качестве сорбентов в различных фильтрах, в том числе и в витринах при эспонировании музейных предметов (например, материал Carbon Cloth). Однако непосредственное применение обугленных тканей для консервации документов, как показали опыты, затруднено опасностью загрязнения объектов угольной пылью.
Перспективным с этой точки зрения представляется использование композиционного материала на основе углеродных волокон для хранения фотодокументов. Материал такого рода – углеродная сорбционная бумага была разработана в Библиотеке академии наук для консервации термодеструктированных книг [6, 7]. Она обладает одновременно как сорбционной способностью за счет углеродного волокна, так и буферной емкостью благодаря хлопковой целлюлозе, обработанной щелочным агентом. Предполагалось ее использование в качестве вкладышей в микроклиматические контейнеры или прокладки между страницами книг, пострадавших от воздействия высоких температур, для нейтрализации избыточной кислотности термодеструктированных бумаги и сорбции вредных веществ типа формалина, использовавшегося для дезинфекции таких книг в экстремальных условиях. Соответственно, она может быть использована как вкладыши в коробки или конверты с фотодокументами, а также как упаковочный материал (обертка).