Чтение онлайн

на главную - закладки

Жанры

Источник землетрясений в свете догмы Рейда-Рихтера
Шрифт:

dA=dU=0.5x ex dV (18)

которая будет проявляться в виде роя толчков. Вулканическое дрожание мы соотносим с наведением в массиве магнитного поля при образовании зарядов, которое в свою очередь вызовет электро - магнитострикционные процессы, а в итоге вибрацию массива, который будет дрожать, и издавать звуки как обыкновенный трансформатор. Вторая причина дрожания будет заключаться в установившемся электрическом пробое внутри вулкана, который может быть стабильным долгое время. Все это не противоречит нашей гипотезе Деформационного взрыва и легко ею объясняется. Замечание: Мы недаром раз за разом повторяем - может быть, процесс пойдёт, а может быть, и нет. Этим мы подчёркиваем, что процесс образования сейсмического удара действительно сложен и многообразен. В одних случаях природе потребуется многоходовая комбинация различных физических явлений, а для других случаев всё может случиться в один - два хода, как в следующем примере с тектоническим землетрясением в Ассаме.

6.4 Тектонические землетрясения

В качестве хрестоматийной классики подобного рода землетрясений опишем Ассамское землетрясение, произошедшее 12 июня 1897 года в Ассаме, Британская Индия на глубине 32 км. По оценкам сейсмологов, его магнитуда составила 8,1.Плато Шиллонг, нагорье на северо-востоке Индии, простирается с востока на запад между долиной реки Брахмапутра и равнинами Бенгалии на 350 км. Это выступ древнекристаллического фундамента, разбитый поперечными сбросами на кулисообразно располагающиеся блоки. Землетрясение вызвало раскол и смещение Шиллонгского плато. Поскольку Индийская тектоническая плита надвигается на Гималаи под Шиллонгским плато, то тектоническая плита задирает плато вверх. С этими движениями связана высокая сейсмическая активность этого региона. Землетрясение продолжалось всего 3 секунды, при этом ускорение превысило силу гравитации - большие камни, плиты, люди были подброшены в воздух. Из описания землетрясения становится ясно, что между плитой плато и лежащей под ней Индийской плитой произошёл Деформационный взрыв такой силы, что её хватило резко взметнуть 350 километровую плиту плато толщиной 32 километра на 15-20 метров и изменить рельеф местности до неузнаваемости на сотнях тысячах квадратных километрах (650 000). Можно сколько угодно гадать, какие явления повлекли такой толчок, но применяя гипотезу Деформационного взрыва и учитывая, что скорость прохождения цепных реакций составляют миллиардные доли секунды, то с уверенностью можно сказать, что в данном случае между плитами массива прошла

именно цепная реакция. На это указывает столь короткое время землетрясения - всего 3 секунды. Применительно к процессам землетрясений, мы знаем, что в массиве могут случиться два вида самопроизвольных цепных реакций: химическая и мангитопластическая. Какая цепная реакция произошла в этом конкретном случае, остаётся только гадать, ибо у нас нет никаких конкретных горно-геологических дат этого района. Хотя мы больше склоняемся к версии цепной химической реакции. Почему? В этом районе отмечены месторождения угля, а значит, там присутствуют углеводородные газы, которые могли быть абсорбированы и хемосорбированы породами массива и молекулы которых под действием цепной химической реакцией массово и одномоментно десорбировались из кристаллических решёток пород и вкупе с Деформационным взрывом устроили Армагеддон. Или вполне можно допустить, что произошли обе цепные реакции одновременно, параллельно одна другой в момент изменения горного давления в массиве. Этим можно объяснить огромную магнитуду подземного толчка. Почему нет? Гипотеза Деформационного взрыва пород массива допускает такой случай.

6.5 Комбинированное землетрясение

Предлагаем сделать анализ землетрясения, которое объединяет в себе сразу несколько типов подземных толчков. Такие необычные землетрясения случаются довольно редко. На этом примере можно наглядно объяснить природу и энергетику подвижек земной коры с позиции одной, общей гипотезы для всех типов землетрясений, раскрывающей суть процесса, в частности с позиции описанной нами гипотезы Деформационного взрыва пород массива, что невозможно сделать, следуя постулатам современной сейсмологии. В данном примере " тесно переплелись" четыре типа подвижек земной коры в одном сейсмологическом событии: тектоническое, вулканическое, внезапный выброс пород и газов, обвальное. Кстати, этот пример "четыре в одном" убедительно и наглядно указывает на то, что энергетическим источником совершенно разных типов подвижек земной коры и землетрясений служит кулоновское взаимодействие атомов и молекул, вызванное изменением горного давления в массиве. Классическим примером такого сложного сейсмического события является землетрясение, произошедшее в США в 154 километрах к югу от Сиэтла, при извержении вулкана Сент Хеленс в 1980 году после его 123 летнего молчания. Сейсмическое событие началось 20 марта 1980 года, когда в этот и последующие дни в окрестностях вулкана произошло несколько десятков слабых землетрясений с максимальной мощностью 4.2 баллов по шкале Рихтера, а 27 марта, произошёл взрыв в кратере вулкана и над его вершиной поднялся столб пепла и пара. Началось извержение вулкана без излития лавы из жерла, которая, по всей видимости, скапливалась у подошвы вулкана. Весь апрель наблюдалось усиление выбросов газов и пепла. Северный склон вулкана начал деформироваться от вспучивания пород массива, которое прирастало до двух метров в сутки и к 17 мая достигло высоты 135 метров. Восемнадцатого мая 1980 года в 8:32 произошло землетрясение мощностью 5,1 балла, и сразу за подземным толчком верхняя часть северного склона вулкана была отделена от всего массива огромной силой. В результате этого примерно от 7 до 9 миллиардов тонн скального массива в один миг превратились в рыхлую массу, которая гигантским оползнем устремилась вниз по северному склону, сметая всё на своём пути. По мере движения горной массы вниз по склону последовало несколько колоссальных взрывов газа, и столб пепла поднялся на высоту 25 километров. Буквально за секунды высота горы уменьшилась с 2950 до 2550 метров, превратившись из правильного в усеченный конус. Диаметр нового кратера (каверны внезапного выброса) составил 4.5км, глубина 1.5 км. Совершенно очевидно, что к марту 1980 года в результате подъёма лавы к подошве вулкана, массив, в результате разогрева и увеличении линейных и объёмных размеров начал терять устойчивость. Горное давление стало перераспределяться среди потерявших устойчивость блоков составляющих подземное и наземное тело вулкана, в результате чего в массиве появились электрические заряды, которые вкупе с фазовыми переходами пород массива начали создавать рой слабых форшоков за счёт энергии кулоновских взаимодействий. Необычность реакции горного массива на извержение вулкана заключалось в пучении пород массива, которое, что хорошо известно из горного дела, является индикатором того, что массив потерял устойчивость и среди его блоков происходит интенсивное перераспределение горного давления. Очевидно, что в апреле горное давление в массиве продолжало стремительно меняться, и это предрекало массиву дальнейшую сейсмическую активность, что и подтвердили последующие события. Утром 18мая последовали сразу два сейсмических события, подземный толчок 5.1 баллов и одномоментно с ним внезапный выброс породы и газа мощностью 7-9 миллиардов тонн горной массы (3км3). То, что два сейсмических события произошли в одно время, не является случайным и нам необходимо рассматривать эти два события, как один процесс, который перерос из подземного движения пород в наземный процесс внезапного выброса, что вполне согласуется с нашей гипотезой Деформационного взрыва пород массива. С механикой подземного толчка в данном случае вопросов не возникает, это обычные подвижки блоков при извержении вулкана, что нельзя сказать про внезапный выброс пород и газа, так как такие события случаются только в подземных шахтах и которые вызываются цепной химической реакцией твёрдого раствора газа в кристаллической структуре пород. Всё это говорит о том, что гипотеза Деформационного взрыва, правильно описывает механику и энергетику сейсмических событий, являясь общей гипотезой происхождения всех видов землетрясений, горных ударов и внезапных выбросов.

Проблемы прогноза и предупреждения землетрясений

Вернитесь, пожалуйста, к Рис. 5 и посмотрите, как отражённая в нём информация почти с точностью ста процентов согласуется со словами уважаемого всем мировым сообществом геофизиков академика В.И. Кейлис-Борока. "Почему долгосрочные прогнозы пока не точны? И почему не удаются краткосрочные прогнозы? Главная причина - хаотический характер динамики сейсмоактивных разломов в том масштабе времени, который как раз и интересен для прогноза, т.е. годы и месяцы. В системе разломов действует много механизмов, создающих сильную неустойчивость. Например, миграция флюидов - циркулирующих в земной коре насыщенными газами растворов - способна снизить прочность разлома на пять порядков. Значит, вторжение флюидов может спровоцировать землетрясение почти неожиданно, отразившись в электропроводности или слабой сейсмичности. Неустойчивость создают и химическое разупрочнение пород, и фазовые переходы с потерей объёма, а также чисто механические явления - растрескивание, смятие пород и т.д. Действуя все вместе, все эти механизмы превращают литосферу в хаотическую нелинейную систему, а в такой системе, как известно, прошлое не определяет будущее." Удивительное совпадение перечисленных причин вызывающих подземные толчки с причинами отражёнными нашим рисунком, не правда ли? Здесь и потоки флюидов, и электропроводность, здесь и радиолиз в виде химического разупрочнения пород и фазовые переходы с набором и потерей объёмов, здесь и всевозможные стрикции и магнитные эффекты. Почти весь процесс землетрясений, описанный в нашей работе, за исключение того, что согласно принципу минимума энергии, прогноз землетрясений, кроме ультракраткосрочных, в принципе невозможен. И академик словами "неожиданно и хаотическая система" почти согласен с нашим утверждением. Окно очень короткого периода времени прогноза драматические ограничивает наши возможности по борьбе с подземной стихией и заставляет напрячь все силы в другом направлении. Если мы знаем механизм образования энергии землетрясений и формы её проявления, то у нас должны появиться возможности если не предупредить, то повлиять на мощность подземных толков в целях снижения их мощности от катастрофического и до приемлемого уровня. Об этом и о путях реализации этой научной мысли пишет в своей работе [32] один из корифеев советской и российской сейсмологии член - корреспондент РАН А.В.Николаев: - "Опыт исследования влияний сейсмических и электрических воздействий на земную кору убеждает нас в том, что сильными землетрясениями можно управлять, их магнитуду можно снизить, а момент возникновения ускорить или задержать". Учёный приводит примеры инициирования землетрясений техногенными и природными процессами: созданием водохранилищ, различными взрывами, добычей полезных ископаемых, а также за счёт изменения скорости вращения Земли, действия приливных сил, солнечной активности, всевозможных погодных и штормовые явлений. Основываясь на этих примерах, он делает вывод о возможности рукотворного влияния на очаг землетрясения двумя способами. В первом случае автор предлагает воздействовать ("обрабатывать") на потенциальные площади землетрясений (миллионы квадратных километров) всем современным набором средств: ядерными и химическими взрывами, электро разрядами большой мощности вызывая так называемую разрядку массива от накопленной им энергии деформаций. Во втором случае автор предлагает непосредственно воздействовать на будущий очаг теми же средствами, что и в первом случае, плюс средства менее мощные, но с более длительным периодом воздействия (мощные вибрационные установки). Мы согласны с рассуждениями учёного о том, что если природа через естественные явления способна вызывать мелкие землетрясения и тем самым понижать мощность возможного крупного толчка, то и человечество с таким же успехом может использовать изобретения природы. Казалось, что сама природа показывает нам путь к нашей безопасности. Учёные всего мира с энтузиазмом подхватили эту подсказку и много лет пытаясь реализовать идею природы в лабораториях и полевых условиях. В своих исследованиях иностранные и отечественные сейсмологи перебрали все возможные способы: и взрывы, в том числе и ядерные, и химические взрывы большой мощности и пресловутые и набившие всем оскомину МГД генераторы, а серьёзных результатов заслуживающих нашего внимания не добились. Ещё более интересная картина получается с лунными приливами. Казалось бы, вот, мы имеем всё необходимое для процесса землетрясения, и энергию прилива и солидные деформации горного массива, но корреляция приливов и отливов с землетрясениями просматривается так неуверенно, что её вполне можно отнести к случайному фактору процесса подземных толчков. Возникает резонный вопрос, если у нас всегда и везде в достаточном количестве имеется энергия лунных приливов и отливов, то почему землетрясения не происходят повсеместно и не дважды в сутки вслед за волнами приливов? Говоря о влиянии на процесс землетрясений вышеперечисленных явлений природы: изменения скорости вращения Земли, действия приливных сил, солнечной активность, погодных и штормовых явлений, величины снежного покрова мы должны исходить из того, что эти явления, согласно гипотезе Деформационного взрыва пород, сами по себе абсолютно ничего для процесса сейсмоактивности не значат. Для старта и прохождения процесса сейсмичности важными и необходимыми являются комбинации вышеперечисленных явлений-процессов с вариациями различных деформационных сил в горном массиве. Ещё в далёком 1954 году член-корреспондент АН СССР Н.Н.Парийский произвёл теоретические расчеты упругой деформации Земли и соответствующих измене-ний ее момента инерции, ее вращения и силы тяжести на поверхности. На основе проведенных вычислений он пришел к выводу, что ни эффекты, вызванные солнечной активностью, ни атмосферные явления, не могут вызвать наблюдаемых изменений угловой скорости вращения Земли, а значит и на сейсмическую активность. По его мнению, эти вариации могут являться результатом глобальных деформационных процессов в Земле, приводящих не только к периодическому изменению ее радиуса, но также к сложному изменению ее формы. То же самое мы можем сказать и о техногенном воздействии на очаги землетрясений, которое также происходит через комбинации этих воздействий с деформационными силами в горных массивах. В непонимании обязательной связки внешних и внутренних причин, в обязательном

многообразии форм энергии деформаций приводящих в подземным перемещением блоков укрывается загадка сейсмических ударов. В этом же заключаются провалы в испытаниях управляемого техногенного воздействия на процесс подготовки очага подвижек земной коры, на процессы стимулирования разрядки тектонических напряжений, на способность уменьшить магнитуду разрушительных землетрясений, как и на возможность, регулировать время их возникновения. Наша задача заключается в поиске комбинаций способных либо стимулировать процесс незначительных форшоков, либо найти варианты процессов приводящих к полной блокировки возможного процесса подвижек горного массива. Но не с целью, так называемой разрядки или сброса напряжений, ибо как мы выяснили, массив не может накапливать энергию деформаций, а с целью "утрясти и утрамбовать" блоки массива, исключая их проскальзывание относительно друг друга. "Утрясая и утрамбовывая" горные блоки и плиты мы исключим случайный и произвольный переход массива в неравновесное состояние, которое может привести массив к его катастрофическим подвижкам. К примеру, в первом случае, возможно, просто объединить процесс прострела массива разрядами от МГД генератора с одновременными подрывами в этом районе зарядов взрывчатки для возбуждения деформаций в массиве. В помощь к этим двум способам, мы можем произвести высоконапорную закачку воды в скважины для существенного деформирования горного массива в нужном нам месте. Плюс мы может добавить что-то ещё в виде действия на обрабатываемый массив различных вибрационных и трамбовочных машин с разной частотой воздействия на массив. Для нас главное подобрать такую комбинацию совместного воздействия на горный массив, на которую массив начнёт "с удовольствием откликаться" с нужной нам частотой и энергией, пока не "утрамбуется" и не успокоится на многие годы. Во втором случае, исходя из знаний того, что цепные химические реакции очень чувствительны к среде реализации, то закачивая в скважины различные рассолы на определённую глубину в районе предполагаемого очага землетрясений или вокруг крупных городов, можно навечно заглушить процесс старта цепных реакций и в итоге всего процесса землетрясений. Этим самым мы можем создать пояса безопасности вокруг городов и жизненно важных центров, таких как атомные станции. В заключение темы прогноза и предотвращения землетрясений хотелось бы сказать несколько слов о так называемой проблеме сейсмического оружия, которая регулярно обсуждаётся в средствах массовой информации. У военных эта тема действительно существует и никто не скрывает, что правительства ряда стран по понятным причинам пытаются быть в курсе последних достижений сейсмологии. Военным сейсмологам можно сказать спасибо только уже за то, что они разработали и внедрили рабочую шкалу оценки мощности подземных толчков и создали целую группу высокоточных приборов и другой аппаратуры, включая компьютерные программы и комплексы для регистрации сейсмической активности. Но, с учётом вышесказанного выше мы должны заключить, что создание сейсмического или тектонического оружия в принципе невозможно.

Заключение:

Из представленной в данной работе модели землетрясений делается несколько принципиальных выводов:

Стартом и движущей силой любого землетрясения, горного удара и внезапного выброса служит потенциальная энергия горного давления в массиве, который по каким-то причинам потерял равновесное состояние.

Потенциальная энергия горного давления основывается на энергии кулоновского взаимодействия атомов и молекул.

Изменение горного давления в горном массиве открывает возможность атомам и молекулам массива или его отдельных блоков трансформировать энергию деформаций в форме потенциальной энергии электронных облаков в энергию сейсмического удара.

Согласно второму закону термодинамики и принципу минимума энергии любой системы, горный массив физически не может накапливать энергию деформаций.

Горный массив реализует только энергию текущих (сиюминутных) деформаций.

Для старта землетрясения не требуется какого-то периода времени на аккумуляцию энергии деформаций.

Прогноз землетрясений, в принципе, невозможен, за исключением ультракраткосрочных с периодом времени прогноза от нескольких минут до нескольких часов.

Согласно первому постулату Бора, горный массив, в котором его атомная система находится в стационарном состоянии, не может излучать сейсмических волн.

Удержание горного массива в стационарном состоянии, а также его приведение в стационарное состояние открывает возможность активного воздействия на очаги землетрясений с целью их предотвращения или понижение магнитуды.

Окружающий нас мир всегда неизмеримо сложнее любой описывающей его модели, в том числе и описанной в данной работе. Это означает, что не существует и не может существовать "единственно верного учения", которое дает ответы на всё аспекты изучаемой проблемы. Любая модель дает лишь сценарии и объяснения гипотез, а нескончаемые споры учёных разных теорий и подходов позволяют науке двигаться вперёд, а уже время отделяет правду от истины. В многообразие форм энергии землетрясений для человечества есть хороший плюс. Если гравитационная, электромагнитная, механическая, тепловая, химическая и другие виды энергии могут переходить друг в друга при землетрясениях в виде изменения движения, то это позволяет нам количественно и качественно записать зависимости этих превращений и определить способность массива воздействовать на окружающую систему с силой, пропорциональной величине её энергии. А это уже лежит в досягаемой области предотвращения катастрофических землетрясений и других динамических явлений в горном массиве. Из текста статьи и сделанных нами выводов становится совершенно очевидно, что согласно второму термодинамическому закону и постулату минимума энергии системы прогноз землетрясений, кроме ультракраткосрочного, в принципе невозможен. Именно потому, что массив физически не способен к аккумулированию энергии деформаций, а источником землетрясений является скачкообразный переход потенциальной энергии электронных облаков атомов горного массива в многообразные формы энергии при изменении горного давления в массиве, которое может измениться практически в любом месте и в любое время. По нашему мнению в деле прогноза землетрясений возможен только краткосрочный прогноз в интервале времени от нескольких часов до 2-3 суток, в момент от изменения горного давления в горном массиве до ударного проявления в виде подземного толчка или внезапного выброса горных пород. Но, зная источник энергии землетрясений и происходящие при этом событии процессы, у человечества есть реальный шанс найти способы обуздать подземную стихию через систему превентивных мер исключающих цепное развитие событий в сейсмоопасных и густонаселённых районах путём создания поясов безопасности. Мы согласны, что у разных исследователей сейсмических процессов может быть разное отношение к изложенному в статье теоретическому и практическому материалу. Но, независимо от этого, развенчав столетний миф Рейда-Рихтера об аккумулировании горным массивом энергии деформаций, превратившийся в догму и заведший сейсмологию в тупик исследований, мы считаем, что выполнили одну из поставленных задач, заявленных в начале исследования. Второе, что хочется особо отметить, так это то, что гипотеза Деформационного взрыва пород постепенно приобретает черты полноправной теории. Хочется надеяться, что представленная в статье гипотеза придаст новое направление исследованиям и поможет учёным в успешной разработке полноценной теории землетрясений. Внезапные выбросы и горные удары в шахтах заслуживают не меньшего внимания в целях предотвращения подземных катастроф и гибели шахтёров. Говоря о землетрясениях, надо иметь в виду, что динамические процессы в шахтах являются частными случаями землетрясений, то есть, говоря о них, мы должны подразумевать землетрясения локального масштаба. К слову, в деле предотвращения горных ударов и внезапных выбросов в шахтах, горные инженеры, в отличие от сейсмологов, достигли определённых практических результатов [33]. В настоящее время ими разработаны как технологические методы борьбы с динамическими явлениями в шахтах, так и технические. И хотя горные инженеры связаны той же ошибкой, что и сейсмологи, считая, что горный массив запасает энергию деформаций и реализует её в виде выбросов и горных ударов, они, в отличие от сейсмологов, имели и имеют возможность "пощупать" очаг выброса и буквально вслепую нашли несколько удачных отгадок этой проблемы. Достигнутые горными инженерами успехи и представленный в статье материал убедительно опровергают мнения некоторой части исследователей в абсолютной непредсказуемости и случайности подвижек земной коры, и показывает возможные пути решения задач предотвращения землетрясений, горных ударов и внезапных выбросов газа и пород. На решение этой задачи вполне могут пригодиться фонды, которые сейчас выделяются на решение задачи прогноза землетрясений. Следует сказать ещё об одном существенном недостатке рассмотрения процесса землетрясений вытекающем из попыток рассчитать параметры подземных толчков, их прогноза и предупреждения, основываясь на лабораторных испытаниях образцов горных пород. Большинство положений и расчётов деформаций горного массива наиболее известных гипотез в части процесса подготовки землетрясения механически заимствованы из сопромата, теоретической механики и механики расчёта прочности конструкционных материалов. Соответственно не учитываются особенности геологического, физического и химического строения пород земной коры, а если и учитываются, то через поправочные коэффициенты, которые могут драматически повлиять на конечный расчёт. Исследователи автоматически переносили и переносят схемы расчёта прочности строительных и конструкционных материалов и величины их деформаций на горные породы, словно забывая, что наиглавнейшей особенностью строения массивов горных пород является их крайняя неоднородность и огромные размеры. Это проявляется в разных формах в механических и физических процессах деформаций на масштабных уровнях, различающихся в тысячи раз. К примеру, два соседних и идентичных по набору пород блоков горного массива, вследствие различных естественных причин (например, различная гидрология, газонасыщенность, минеральные включения, специфический тектогенез пород и т.д.) могут иметь прочностные показатели, различающие на несколько порядков, что существенно повлияет на прохождение сейсмических волн через этот район. Таким образом, все модели сейсмичности, выполненные по данным лабораторных исследований образцов пород, содержат тот или иной стохастический генератор, который создаёт в модели такой хаос, что об описываемом сейсмическом событии мы можем говорить только в приближённых и вероятностных терминах. Следовательно, строить математические модели процессов землетрясений основанных на данных лабораторных опытов очень и очень сомнительное занятие. Справедливости ради следует заметить, что в настоящее время мы не в состоянии точно охарактеризовать свойства горных пород залегающих на глубинах более 20 км. Вполне возможно, что поднятые в будущем образцы кернов преподнесут для нас удивительные сюрпризы.

Мир стремительно развивается, и в последние десятилетие появился целый ряд высокочувствительных и высокоточных цифровых измерительных приборов и интеллектуального программного обеспечения, а так же систем связи и позиционирования. Это даёт учёным возможность провести полевые исследования гипотез возникновения землетрясений и их источников на более качественном уровне и получить результаты, которые невозможно было получить ещё 10 - 15 лет назад. Хочется надеяться, что в ближайшее время, измеряемое двумя-тремя поколениями, человечество решит эту проблему. В этой связи актуальными являются слова Бориса Борисовича Голицина: "Можно уподобить всякое землетрясение фонарю, который зажигается на короткое время и освещает нам внутренность Земли, позволяя тем самым рассмотреть то, что там происходит. Свет от этого фонаря пока ещё очень тусклый, но не подлежит сомнению, что со временем он станет гораздо ярче и позволит нам разобраться в этих сложных явлениях природы..."

Литература:

Литовченко И Н О типах очагов землетрясений, их модели и формирование// электронный ресурс: http://www.sciteclibrary.ru/texsts/rus/stat/st4977.pdf

Бучаченко А Л УФН184 1 (2014)

Кругляков Э ПУчёные с большой дороги(М.: Наука 2001 стр.187)

Гуфельд И ЛВестник Российской академии наук83 3 (2013 с. 236-245)

Сторчеус А В Заметки к методике расчёта сейсмической энергии взрывов и землетрясений. Институт вулканологии и сейсмологии ДВО РАН, Петропавловск-Камчатский, 683006//электронный ресурс: http://leo.gdirc.ru/files/libs/3.pdf

Закон Гутенберга-Рихтера//электронный ресурс:https://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%93%D1%83%D1%82%D0%B5%D0%BD%D0%B1%D0%B5%D1%80%D0%B3%D0%B0_%E2%80%94_%D0%A0%D0%B8%D1%85%D1%82%D0%B5%D1%80%D0%B0

Ребецкий Ю Л Современное состояние теорий прогноза землетрясений. Результаты оценки природных напряжений и новая модель очага землетрясений // электронный ресурс: http://yak.ifz.ru/pdf-lib-yak/Pages359-395.pdf

Эйби Дж АЗемлетрясения(М.: Недра, 1982. стр.101)

Поделиться:
Популярные книги

Неудержимый. Книга III

Боярский Андрей
3. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга III

Я – Орк. Том 4

Лисицин Евгений
4. Я — Орк
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 4

Звезда сомнительного счастья

Шах Ольга
Фантастика:
фэнтези
6.00
рейтинг книги
Звезда сомнительного счастья

Отверженный III: Вызов

Опсокополос Алексис
3. Отверженный
Фантастика:
фэнтези
альтернативная история
7.73
рейтинг книги
Отверженный III: Вызов

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Вечная Война. Книга V

Винокуров Юрий
5. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
7.29
рейтинг книги
Вечная Война. Книга V

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

Ночь со зверем

Владимирова Анна
3. Оборотни-медведи
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Ночь со зверем

Измена. За что ты так со мной

Дали Мила
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. За что ты так со мной

Неожиданный наследник

Яманов Александр
1. Царь Иоанн Кровавый
Приключения:
исторические приключения
5.00
рейтинг книги
Неожиданный наследник

Аромат невинности

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
9.23
рейтинг книги
Аромат невинности

Проклятый Лекарь. Род III

Скабер Артемий
3. Каратель
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Проклятый Лекарь. Род III

Лисья нора

Сакавич Нора
1. Всё ради игры
Фантастика:
боевая фантастика
8.80
рейтинг книги
Лисья нора