Чтение онлайн

на главную - закладки

Жанры

Источник землетрясений в свете догмы Рейда-Рихтера
Шрифт:

X-> X•+ + e / Y + e -> Y• (12)

В качестве примера рассмотрим прохождение цепной реакции молекулами водорода и кислорода (как наиболее изученной) Рис.7. Инициирования процесса цепной реакции:

H2 + O2-> 2OH• (13)

H• + O2->OH• + O• (14)

O• + H2-> OH• + H• (15)

OH• + H2->H2O + H• (16)

Мы получили три последовательные реакции (14,15,16) с суммирующей реакцией:

Н• + О2 + 2Н2 -> ОН•+ 2Н• (17)

где одна активная частица превращается в три активных частицы: атомы кислорода O•, водорода Н• и свободный радикал ОН•

Рис.7 где: O*, H*, OH, H2, O2- кислород, водород, их активные частицы и радикал.

Так как цепные реакции очень "капризны" к условиям, составу и прочим различным факторам, некоторые активные частицы могут погибнуть, не дав продолжения цепи, то приведённая схема реакции может выглядеть иначе. На самом деле подробная кинетическая схема химических реакций включает более 20 элементарных реакций с участием свободных радикалов в реагирующей смеси, а при наличии в системе соединений азота, углерода и других примесей число ветвей реакций существенно увеличивается. Не в этом суть, а том, что даже одного радикала с энергией 17 микро Джоуля может хватить, чтобы число активных центров начало расти в геометрической прогрессии и реакция перешла во взрывной режим. Для реакции каждой активной частицы с молекулой исходного вещества требуются миллиардные (!) доли секунды. За эти миллиардные доли секунды должны перестроиться и кристаллические решётки пород вмещающих газ, выделив при этом энергию затраченную массивом на деформацию решёток, изменив при этом свой объём и форму(!). Из практического опыта наблюдения и изучения внезапных выбросов хорошо известно, что в этом процессе могут принимать участие не только метан и водород, но и другие химические вещества. К примеру, известны внезапные одномоментные выбросы в миллионы кубических метров газа. Основными участником таких событий были газы: СH4, СО2, H2, N2 . Например, при Крымском землетрясении 1927 года [20] его очаг располагался в море и рыбаки, находящиеся в это момент в эпицентре, отметили вскипание моря и шум от выводящего из воды газа. Это указывает на то, что при землетрясении происходит резкая десорбция горного массива. Как показывает практика, все представленные в земной коре породы в процессе метаморфизма могут стать абсорбентами газов. Даже основные породы земной коры - базальты, обладающие высокой крепостью и плотностью и, казалось бы, неспособные служить адсорбентом, в процессе метаморфизма становятся идеальными очагами землетрясения. Так результаты [21] бурения сверхглубокой Тюменской скважины, полностью подтверждают этот вывод. С глубины 6424 метра скважина вскрыла толщу базальтов, которые

в отличие от аналогичных по возрасту и составу пород,оказались сверхпористыми породами и превратились в идеальные адсорбенты.

Давайте рассмотрим образование малых форм землетрясений - горных ударов и внезапных выбросов с позиций возможности инициирования этого явления цепной химической реакцией. Глазами современной науки [22,23,24] газ, растворённый в горном массиве, при резком уменьшении окружающего горного давления, взрывообразно десорбируется из горного массива с выделением потенциально энергии сжатия газа и прорывается в горную выработку. Но мы прекрасно знаем, что адсорбированный газ при снятии внешнего давления переходит в свободное состояние и выделяется из породы не мгновенно, а в течение одного - двух часов. А абсорбированный газ выделяется из горного массива в течение несколько суток и недель, а хемосорбированный газ покидает горную породу в течение десятков лет и в большинстве случаев остаётся химически связанным с массивом навечно. Очевидно, что в таком случае, ни о каком резком и внезапном выбросе газового "мешка" из горного массива не может быть и речи, ибо свободного газа там нет до той минуты, пока в массиве не пройдёт цепная химическая реакция. Первый вопрос, на который мы должны ответить, это существуют ли в горном массиве те миллионы кубометров растворённого в нём газа? Ещё на заре становления угольной отрасли, немецкий химик Виктор Мейер провёл интересные опыты с определением количества газов, выделяемых из каменного угля при различных температурах [25]. Он нагревал стограммовые кубики угля с длинной ребра примерно 4 сантиметра до 3000 С и получал на выходе в среднем 1850 см3 различных газов (СО2 - 1,4%; СН4 - 98,5%; азота - 0,1%). То есть пылинка угля в 1 грамм выделяет примерно 18,5 см3 газов готовых вступить в химическую реакцию. К этой цифре надо добавить примерно 20% хемосорбированного газа, а также можно с уверенностью сказать, что количество газов при увеличении температуры нагрева угля значительно возрастёт, как и скорость прохождения химических реакций. В таблице 1 приведены некоторые данные по выбросам на шахтах мира [26]:

Страна Шахта

Количество выброшенного угля, т Количество выделившегося газа, м^3

Австралия Коллинсвил 800 140000

Великобритания Корвей 2500 70000

Германия Иббенбюрен 2500 4700

Канада Моррисей 3500 60000

Китай Санхуба 12780 1000000

Польша Нова Руда 3000 820000

СССР им. Гагарина

14500 >250000

Турция Козлу 1100 110000

Франция Фонтэн 5600 100000

Япония Юбари Шин 4000 600000

Табл.1 Внезапные выбросы на шахтах мира.

Как мы видим, у природы есть в закромах газ, стремящийся выйти из кристаллической решётки, и он готов в любую минуту мгновенно покинуть своё место в кристаллической решётке породы, чтобы вызвать сейсмический удар.

Прикладная часть

Уже Фарадей знал, что некоторые кристаллы электризуются при деформации и расщеплении. Он писал в 1833 г.: "Под обыкновенным электричеством я понимаю такое, которое можно получить от обычной машины, или из атмосферы, или посредством давления или расщепления кристаллов..." Ещё в конце ХХ века были предприняты первые попытки связать подземные толчки с отдельными электромагнитными явлениями. В этом направлении работали многие известные советско-российские учёные и учёные зарубежных стран: Г.И. Шевцов, Г.А. Соболев, З.И. Стаховская, А.В. Кольцов, О.М. Барсуков, В.Я. Антонченко, Н.С, В.В. Ильин В.В, М. П. Воларович, Э. И. Пархоменко У.Ямазаки, Т.Рикитаки и многие другие. Учёными были проделаны многочисленные полевые и лабораторные исследования горных пород, в ходе которых были выявлены механо-электро-магнитные эффекты присущие горному массиву и которые могли влиять на ход динамических проявлений в горных массивах. Показательна в этом плане диссертация В.С. Жукова [27], который изучал электрические параметры образцов горных пород Ашхабадского полигона при сложном напряжённом состоянии. Им были отмечены значительные знакопеременные вариации электрического сопротивления и электрического поля образцов при одноосном сжатии, которые, как он предположил, обусловлены деформацией и разрушением образцов, что вполне в духе нашей гипотезы Деформационного взрыва горных пород. В диссертации также приведены результаты теоретических и экспериментальных (полевых и лабораторных) исследований структуры и природы вариаций естественного электрического поля и электрического сопротивления горных пород в условиях мощного осадочного чехла. Эти результаты убедительно показывает, что основными причинами аномальных вариаций являются: перераспределение (фильтрация) поровой жидкости в зонах тектонических разломов, трещинообразование при деформации и разрушении горных пород, которые, в свою очередь, обусловлены изменениями тектонических напряжений. В работе также, отмечена способность пород, менять электрические свойства, и изменяются под действием циклов тектонического сжатия и разгрузки и то, что изменение этих свойств может указывать на изменение напряженного состояния и деформации пород. В результате этого, как отметил автор, могут возникать следующие явления: 1. Вариации электрического сопротивления горных пород. 2. Излучение электрических полей за счет пьезоэффекта горных пород. 3. Электрокинетические поля. 4. Другие механоэлектрические явления. Под другими явлениями автор видимо имел в виду различного рода стрикции, пиро и пьезо эффекты, что опять же хорошо согласуется с гипотезой Деформационного взрыва. Проводившиеся отмеченными выше исследователями лабораторное эксперименты также показали, что электропроводность горных пород может значительно увеличиваться при нагружении образцов и их деформировании. Это связывается с изменением структуры породы: изменением извилистости и площади поперечного сечения токопроводящих каналов. При деформации и разрушении горных пород большую роль играет давление поровой жидкости. Его увеличение облегчает разрушение пород и снижает электрическое сопротивление пород. Было установлено, что сопротивление образцов магматических пород в процессе нагружения падает почти на порядок и резко возрастает после разрушения. Рядом исследователей в лабораторных условиях изучались и изучаются электрические эффекты при образовании трещин и возникновении при этом электрического разряда связанного с движением дислокаций в отдельных блоках. В этой связи, основным вопросом при возникновении землетрясения является вопрос - каким образом происходит преобразование энергии деформации горного массива в механическую энергию сейсмического удара? В качестве возможных процессов механического воздействия электромагнитных импульсов на находящиеся в напряженном состоянии геологические структуры исследователями рассматривались все перечисленные выше эффекты, однако учёные недооценили их влияние, на процессы подвижек, посчитав, что перечисленные механизмы либо обладают пренебрежимо малым эффектом механического влияния, либо требуют выполнения маловероятного комплекса условий. Мы категорически не согласны с этим заключением и в качестве оппонирования приводим следующие примеры по различным видам землетрясений:

6.1. Техногенные землетрясения

Предлагаем к рассмотрению пример, как изменение горного давления в массиве служит стартом большинства землетрясений, горных ударов и внезапных выбросов пород и газов. Возьмём так называемые наводимые, или техногенные землетрясения, произошедшие в связи с наполнением водохранилищ. Во-первых, возникает вопрос: почему техногенные землетрясения происходят не в зонах сейсмической активности, не в зонах движения тектонических плит, не в зонах разломов и действия вулканов, как это должно было быть по классическому подходу к рассмотрению причин землетрясений? И второй, главный вопрос: почему землетрясения происходят по мере заполнения водохранилищ, почему прекращаются с окончанием заполнения и почему начинаются вновь, как только по каким-то причинам начинается слив воды из водохранилища? То есть толчки происходят только в момент изменения уровня зеркала водохранилища, а значит и изменения горного давления под ним? Предваряя описание примера, напоминаем, что процесс землетрясения по гипотезе Деформационного взрыва пород - это сложный многоступенчатый процесс в котором принимают участие различные физические, химические и механические явления, которые вкупе с горно-геологическими характеристиками массива и условиями нагружения и будут определять возможность прохождения землетрясения. Наличие деформационной нагрузки в горном массиве является только одним из главных, но недостаточных условий для возникновения подземных толчков, так, же как и при взрыве газа метана в угольной шахте, при котором наличие газа метана является главным, но только одним из многих условий взрыва. Например, чтобы в выработке скопился газ метан и произошёл его взрыв, датчик метана в забое должен быть неисправен. Или должен произойти внезапный и залповый выброс метана в рудничную атмосферу из угольного пласта, или из выработанного пространства шахты, или вентиляционная система шахты или участка шахты нарушена и не работает должным образом по ряду причин, которых может быть с десяток. Плюс к этим условиям, концентрация метана в забое обязана быть в пределах 4% -16%. При любой другой концентрации можно ходить с факелом по шахте и ничего не случится. Следующим условием взрыва метана является искра, необходимая для старта цепной реакции взрыва. И эта искра обязана появиться строго в тот момент, когда концентрация метана в горной выработке будет в пределах 4-16%%. Наличие мощной вентиляции в шахтах ежеминутно меняет концентрацию газов в рудничной атмосфере, разбавляя метан до мизерных концентраций и искре необходимо появиться строго в нужный момент, когда он присутствует в забое. Следующим фактором будет возникновение самой искры, а она, возможно, появится в случае аварии с электрооборудованием в шахте. То есть авария с электооборудованием обязана произойти по времени строго в тот момент, когда в забое концентрация метана составит 4-16%%. Ни раньше на секунду, ни позже. Но и это не всё, при любой аварии в электрической схеме шахта обесточивается при помощи систем контроля и различных датчиков, которые именно в момент концентрации метана в забое в пределах 4-16%% должны не сработать по каким-то причинам и не отключить энергоснабжение аварийного участка. Причинами могут отказа датчиков могут быть... и так далее. На этом примере мы показываем, как непросто вызвать взрыв в шахте газа метана и как много условий и комбинаций этих условий необходимо выполнить, чтобы он состоялся. Но, несмотря на, казалось бы, невероятную случайность совпадений разных событий, взрывы газа регулярно происходят на шахтах мира и уносят жизни шахтёров. Как метко замечено: - Случайность, это пересечение закономерностей. В случае с землетрясением природе также необходимо скомбинировать множество условий для того, чтобы сейсмический удар состоялся. Хрестоматийный пример техногенного случая - землетрясение в индийском городе Койна при наполнении водохранилища с магни-тудой 6,5, центр которого располагался недалеко от плотины (h - 103 м). Землетрясение, вызвавшее значительные разрушения, произошло 11 декабря 1967 г. в области, которая раньше считалась асейсмичной. Как известно, изменение горного давления может произойти, как при сливе воды из хранилища за счёт релаксационного раскрытия трещин массива и уменьшении порового давления, так при увеличении горного давления при наполнении водохранилища, вследствие деформаций растяжения, смещения блоков, увеличении порового давления флюидов, газов. Согласно гипотезе Деформационного взрыва, при наполнении водой водохранилища (сливе) могла возникнуть (а может, и нет) следующая ситуация: вследствие изменения давления в породах горного массива под зеркалом, возникнет эффект А.В. Степанова - появление электрического потенциала на поверхности деформированных образцов пород при отсутствии внешнего электрического поля. Эффект был открыт в ещё далёком 1933 году и дополнил ещё более старые работы в этой области академика А. Иоффе (1926 г.), З. Дьюлаи, Д. Хартли, И. Кишша (1928 г.). Рис.8.

Рис.8 Схема опыта эффекта Степанова

а) Образец породы, б) Образец после раскола, в), г) замеры показателей

Из эффекта Степанова и работ, указанных выше исследователей вытекают следующие главные выводы: 1) Чем выше деформация горных пород, тем выше электрическая разность потенциалов на поверхности деформируемых образцов; 2) При постоянной, установившейся нагрузке в горном массиве разность потенциалов падает до нуля; 3) Разность потенциалов зависит от структуры пород. Первый пункт объяснить несложно, это очевидно, что при большей нагрузке, появляется больше трещин в массиве, а как мы знаем, каждая трещина способна генерировать электрические заряды и создавать разность потенциалов. Второй пункт даёт нам ответ на вопрос, почему после наполнения водохранилища подземные толчки прекращаются - при установившейся нагрузке разность электрических потенциалов пород становится равной 0 и электромагнитные процессы прекращаются. Энергия зарождающегося землетрясения от гидростатического воздействия зеркала водохранилища в породах при стабильном горном

давлении будет стремиться к минимуму и "лишние джоули" перетекут в окружающий массив. Тем самым потенциальная энергия напряжений массива будет стремиться к 0, приводя всю систему к равновесию. Ответ на третий пункт такой же очевидный, как и на первый - у всех пород разные молекулярные свойства и соответственно физические и химические параметры и согласно эффекту Степанова малейшие примеси могут уменьшить до нуля электрический потенциал горных пород. После ответа на три пункта зададим себе вопрос: - Достаточно ли изменения горного давления под каким-нибудь водохранилищем, чтобы произошло землетрясение? Ответа два: может быть достаточно, а может быть, и нет. Может быть, именно структура пород под водохранилищем не даст горному массиву достаточного импульса, необходимого для прохождения одного из механо-электро-магнитного эффектов или нескольких эффектов сразу, чтобы разрушить горный массив. Мы не устаём повторять, что процесс землетрясения, это сложный многоступенчатый процесс, зависящий от многих факторов, и процесс вполне может пойти дальше одной реакции массива. Процесс может "заглохнуть" в самом начале, а может развиваться, как набирающие силу торнадо, которое втягивая в свою воронку всё новые и новые порции воздуха, разгоняет его до больших скоростей и шаг за шагом приближает кульминационный момент катастрофы. К примеру, появление электрических зарядов и разности потенциалов в горном массиве под зеркалом водохранилища в результате его деформации, вызовет появление электромагнитного поля, которое в свою очередь может (а может, и нет) вызвать явление магнитопластичности и присущее этому процессу цепную реакцию деппининга дислокаций. В этом случае особенно показательна работа академика РАН А.Л. Бучаченко [2], отмеченная нами выше, которая показывает практическое использование явление магнитопластичности применительно к прогрессу развития подвижек земной коры и которая хорошо дополняет и вписывается в гипотезу Деформационного взрыва пород. Идём дальше. А что если и после этого, процесс магнитопластичности и деппининга дислокаций не сможет придать массиву необходимый импульс для развития и нарастания выделения энергии массивом? В таком случае, имея электромагнитное поле, природа постарается реализовать процесс несколькими явлениями в зависимости от различных свойств вмещающих пород: магнитострикции, электрострикции, цепной химической реакцией растворённых в породе газов, что, в конце концов, приведёт к следующему этапу: изменению размеров кристаллов пород и линейному, мгновенному и неудержимому расширению горного массива. Хватит ли теперь перечисленных нами факторов для прохождения землетрясения? Опять же ответ не однозначен: может быть хватит, а может, и нет. В процессе важна любая "мелочь", если так можно выразиться. К примеру, из исследований Степанова получается, что форма массива влияет на величину возникающего потенциала. В опытах он был наименьшим при плоских образцах (высота меньше длины) и наибольшим при образцах кубической формы. То есть, даже такой параметр горного массива, как размер блока, может оказать решающее значение. У природы в запасе слишком много комбинаций и времени на их "перебор": одни комбинации могут затормозить и наглухо заглушить процесс подвижек массива, а другие комбинации могут разогнать процесс до невероятных скоростей и аномально его усилить с катастрофическим завершающим аккордом. По всей вероятности в природе существуют такие комбинации процессов, о которых мы пока не знаем и не догадываемся об их существовании. К нашему счастью, большинство реакций горного массива на изменение горного давления и вариации деформаций дальше лёгкого потряхивания местности не идут. В том, что, в процессе землетрясения много нюансов, или много "мелочей", есть существенный плюс для человечества. Он заключается в том, что предотвратить землетрясения вполне возможно, как и возможность людей повлиять на его мощность, ибо, чем больше вариаций, тем больше возможностей "ухватиться за какую-нибудь мелочь", и в итоге, повлиять на весь процесс в целом. Заключая сказанное о техногенных землетрясениях, приводим небольшой объём статистики от американских коллег, который ярко отражает суть технологических землетрясений. Так, учёные под руководством К. Фролиха [C. Frohlich] из университета штата Техас в Остине опубликовали статью [28] в которой приводят данные, согласно которым, из 162 землетрясений, зафиксированных в Техасе в период 1975-2015 гг., примерно четвертая часть была вызвана добычей сланцевых углеводородов. Официальная статистика сейсмологической службы штата свидетельствует о том, что за последние 40 лет, когда в штате начались активные работы по добыче сланцевой нефти и газа, частота подземных толчков возросла. Проанализировав данные, ученые установили, что подземные толчки спровоцированы одномоментной закачкой большого количества воды в скважину. То есть и в этом случае, не о каких сейсмозонах, тектонических плитах, разломах речь не идёт, а расположение очагов в непосредственной близости от скважин указывает на их зональность и строгую зависимость от точки приложения нагрузки на массив и перераспределением (изменением) энергии деформаций отдельных блоков в массиве. Приведённый нами пример говорит о том, что гипотеза Деформационного взрыва пород имеет под собой реальную почву.

Морозобойные землетрясения

В этом примере мы разберём пример прохождении морозобойных землетрясений, которые ряд исследователей никаким образом не желают объяснять и не считают за землетрясения. Действительно, с позиции гипотезы накопления массивом энергии деформаций объяснить морозобойные землетрясения абсолютно не представляется возможным, ибо такие землетрясения происходят только в рыхлом грунте, который физически не может накапливать энергию деформаций и эти землетрясения случаются только во время морозов, что вообще нельзя никак объяснить и связать с многолетними накоплениями энергии деформаций. Хрестоматийный пример такого землетрясения - Восточно-Ладожское случившееся 30 ноября 1921года [29] с приблизительной магнитудой М 3-4.2. С точки зрения гипотезы Деформационного взрыва пород, произошло следующие: после дождей и выпадения снега, который растаял, в районе, представленном чехлом осадочных отложений в виде грубодисперсных песчанно-глинистых отложений и гальки мощностью в сотни метров, установились морозы. Обильно увлажнённая до большой глубины почва начала промерзать с постепенным углублением линии замерзания. Известно, что промерзание рыхлого грунта происходит с сильными изменениями его физических свойств. Лед (вода при замерзании увеличивается в объёме на 11%), раздвигает частицы, агрегаты и блоки породы преобразует структуру порового пространства, в котором на поверхностях частиц грунта и во множественных порах возникают плёнки незамёрзшей воды. Удельное электрическое сопротивление в этом случае меняется в сотни и тысячи раз в зависимости от степени преобразования породы, то есть от степени её промерзания. В рыхлом грунте образуются различные зоны с различным удельным сопротивлением и горным давлением. То есть то, что необходимо для старта выделения энергии землетрясения согласно гипотезе Деформационного взрыва. Также нам известно, что растущие кристаллы льда генерируют электромагнитное излучение [30] в виде электрических зарядов, которые скапливаются на границе твердой и жидкой сред и которые вызывают значительную разность потенциалов. Хватит ли одной разности потенциалов для пробоя зон промерзания сказать трудно, но, мы уже знаем, что процесс землетрясения, это многоступенчатый процесс и следующим этапом для продолжения процесса (если он остановится в этой точке) может быть хорошо известный процесс образования электрических зарядов на гранях растущих кристаллов льда (любого кристаллического вещества при кристаллизации) с поляризацией горного массива. Это в свою очередь вызовет появление в массиве электромагнитных эффектов (пьезо, пиро и др.), способных за короткий промежуток времени запустить процесс Деформационного взрыва с образованием сейсмического удара. В случае неудачи и на этом этапе, у природы всегда найдётся очередной ход, лишь бы выполнялось главное условие любого подземного толчка - изменение горного давления в массиве. К примеру, с промерзанием грунта, а значит с увеличением его объёма и увеличением горного давления в глубине его массиве, а также от действия электомагнитических и механических эффектов, начнётся интенсивное растрескивание массива. Как мы знаем при раскрытии, и увеличение длины трещин образуются электрические заряды и разность потенциалов, которая при скорости движения трещин во льду порядка 750-1000 м/c. и наличии в промёрзшем массиве множества зон с плёнками, капиллярами и порами не застывшей воды может достичь громадных величин. В момент пробоя "изолятора" через горные породы протечет огромной силы ток, который и принесет целый список отмеченных нами неприятностей, ибо мощность, выделяемая электрическим током, пропорциональна сопротивлению горных пород и электрический разряд будет максимальным в области максимального электрического сопротивления горных пород. Если и этого будет недостаточно для возникновения Деформационного взрыва пород, то природа "легко найдёт запасной вариант". Например, при прохождении электрического заряда в обводнённом грунте, может возникнуть гидравлический удар, который вкупе с сейсмическим, могут вызвать локальный, но сильный удар в горном массиве [видео файлы 8, 28]. Опять неудача? Ещё вариант -явление дилатансии, которое как раз наиболее ярко выражено в плотных сыпучих и переуплотненных связанных грунтах. При определенной величине напряжений грунт начинает расширяться с увеличением объема. Этот эффект можно увидеть, когда влажный песок вокруг ноги человека, идущего по пляжу, кажется, высохшим. Деформация, вызванная ногой, расширяет песок под ним и вода в песке перемещается, чтобы заполнить новое пространство между зернами, то есть, дефлюидизация является одной из причин проявления дилатансии. Общий рост внутреннего напряжения вызывает увеличение объема пород и образование послойных деформаций со смещением слоев относительно друг друга и ураганным растрескиванием. Этот процесс приведёт к изменению физических свойств грунта, который даст старт процессу резкой подвижки массива по описанной выше цепочке.

Реальны сценарии, который мы описали? Вполне. То, что электрический разряд в диэлектриках может разрушать и дробить породу известно давно, так почему он не может вызвать подземного толчка? К примеру, изобретение [31] датировано ещё 26.06.1951 годом и его формула констатирует: "Способ разрушения горных пород и полезных ископаемых с помощью электрических разрядов в них, отличающийся тем, что с целью повышения его эффективности разрушение производят импульсными электрическими разрядами при достижении напряженности поля в горной породе или полезном ископаемом, равной или превышающей их электрическую прочность". Не вникая в подробности, отметим, что на стадии формирования разряда в горном массиве канал разряда проходит по областям расположения локальных электрических неоднородностей, то есть различных включений грунта, и границ их конгломерации. Когда канал разряда сформировался, то в нем выделяется энергия электрического разряда за короткий промежуток времени. При этом в канале разряда практически мгновенно повышается температура и давление. В результате чего, канал разряда, расширяясь, генерирует ударную волну и волны сжатия, которые двигаясь в неоднородной среде, формируют механические напряжения и разрушения внутри горной породы. Данный пример не противоречит гипотезе Деформационного взрыва пород и вполне объясняет суть происходящих явлений.

Вулканические землетрясения

Люди знакомые с сейсмологией понимают, как много общего у морозобойных и вулканических землетрясений. Это и температурный фактор, и их локальность, и зональность, и маломощность, и мелкофокусность. Правда, температура процессов абсолютно противоположная, но важен не знак температуры, а её наличие. Считается, что первопричиной вулканических землетрясений являются строго локальные геологические и тектонические силы и их появление можно объяснить (и объясняют) температурными неоднородностями в недрах Земли. Мы согласны, что температурный фактор играет большую роль при развитии подвижек массива в районе действия вулкана. Это так, но согласно гипотезе Деформационного взрыва пород, источником подземных толчков во всех случаях служит не температурный фактор, а изменение горного давления, которое вызывает появление в массиве электрического заряда, в данном случае, в недрах вулкана и его окрестностях. Хрестоматийный пример: 20.11.1951 г. началось извержение вулкана Ключевская Сопка. За несколько месяцев до начала извержения в районе Ключевской Сопки произошло около 700 толчков с очагами на небольших глубинах. С началом извержения толчки прекратились и сменились непрерывным вулканическим дрожанием. Когда через несколько дней сила извержения заметно упала, вулканическое дрожание прекратилось, но возобновились, постепенно затухая, местные землетрясения. При этом было замечено, что увеличилось количество толчков с повышенной, не характерной для вулканических землетрясений, глубиной. Поэтому некоторые исследователи называют камчатские землетрясения вулканотектоническими, подчеркивая этим морфологическую и генетическую общность этих двух групп землетрясений. Мы считаем это правильно, так как согласно гипотезе Деформационного взрыва пород все землетрясения имеют общую морфологию и генетику и весь процесс идёт по установленному природой порядку: изменение давления в массиве, появление заряда, возникновение различных эффектов, землетрясение. При подходе магмы к поверхности, окружающие жерло вулкана породы начнут длительный процесс перекристаллизации, то есть менять форму и объем, в результате чего изменится горное давление в массиве, которое вызовет появление электрического заряда. Начнут возникать трещины в массиве и выход газов из кристаллических решёток пород, что, в конце концов, приведёт к подземным толчкам. Мы не будем подробно описывать этот процесс, так как в других примерах, мы уже его описали. Остановимся на двух особенностях вулканического землетрясения с позиции Деформационного взрыва пород: множестве мелких толчков и вулканическом дрожании. Процесс плавления и перекристаллизации пород происходит постоянно в момент подхода магмы к жерлу, следовательно, процесс образования электрических зарядов происходит всё это время. Плюс, при изменении формы и объёма вулканического массива в нём возникает потенциальная энергия деформаций,

Поделиться:
Популярные книги

Студиозус 2

Шмаков Алексей Семенович
4. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Студиозус 2

Академия проклятий. Книги 1 - 7

Звездная Елена
Академия Проклятий
Фантастика:
фэнтези
8.98
рейтинг книги
Академия проклятий. Книги 1 - 7

Афганский рубеж 2

Дорин Михаил
2. Рубеж
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Афганский рубеж 2

Отверженный. Дилогия

Опсокополос Алексис
Отверженный
Фантастика:
фэнтези
7.51
рейтинг книги
Отверженный. Дилогия

Моя (не) на одну ночь. Бесконтрактная любовь

Тоцка Тала
4. Шикарные Аверины
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Моя (не) на одну ночь. Бесконтрактная любовь

Деспот

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Деспот

Херсон Византийский

Чернобровкин Александр Васильевич
1. Вечный капитан
Приключения:
морские приключения
7.74
рейтинг книги
Херсон Византийский

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Барон играет по своим правилам

Ренгач Евгений
5. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Барон играет по своим правилам

Хозяйка старой усадьбы

Скор Элен
Любовные романы:
любовно-фантастические романы
8.07
рейтинг книги
Хозяйка старой усадьбы

Санек

Седой Василий
1. Санек
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Санек

Тринадцатый III

NikL
3. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый III

Жена со скидкой, или Случайный брак

Ардова Алиса
Любовные романы:
любовно-фантастические романы
8.15
рейтинг книги
Жена со скидкой, или Случайный брак

Жена на четверых

Кожина Ксения
Любовные романы:
любовно-фантастические романы
эро литература
5.60
рейтинг книги
Жена на четверых