История электротехники
Шрифт:
Появились работы в области частотно-токового управления в асинхронном приводе.
В 60–70-е годы в МЭИ под руководством М.Г. Чиликина проведены интенсивные исследования и разработки дискретного электропривода с шаговыми двигателями (Б.А. Ивоботенко), широко внедренные в металлургической, станкостроительной и других отраслях промышленности, получившие признание технической общественности и заложившие основы дальнейшего развития новых типов регулируемого электропривода.
Одновременно работы в области дискретного электропривода были начаты в ряде других научных центров, в частности в Лидском университете (Великобритания), ставшем позднее известным своими работами, связанными с силовыми версиями дискретного электропривода (П. Лауренсон).
В
6.6.9. СИСТЕМЫ ПОДЧИНЕННОГО РЕГУЛИРОВАНИЯ
Транзисторы и многочисленные устройства на их основе позволили перейти к практической реализации ряда эффективных идей в области систем управления электропривода.
Наиболее плодотворной оказалась идея, предложенная еще в середине 50-х годов Кесслером (ФРГ) и состоящая в подчиненном регулировании координат электропривода с последовательной коррекцией. Сложная система строится как совокупность отдельных, но подчиненных один другому контуров (тока, скорости, положения и др.), каждый из которых оптимизируется отдельно посредством своего регулятора (рис. 6.50).
Во ВНИИэлектроприводе в 60–70-е годы были созданы нашедшие широкое применение в промышленности комплексы средств управления электропривода — аналоговая ветвь УБСР-АИ и цифровая ветвь УБСР-ДИ. Эти технические средства сыграли заметную роль в практическом развитии электропривода, поскольку они унифицировали, упрощали, сокращали время наладки и пуска сложных систем регулируемого электропривода постоянного и переменного тока с преобразователем частоты с непосредственной связью (ПЧНС).
К указанному периоду относится завершение в МЭИ (В.И. Ключев) комплекса работ, связанных с глубоким исследованием механической части привода с упругими связями, ее взаимодействия с электрической частью. Были успешно решены проблемы синтеза сложных электромеханических систем, где в полной мере использовались идеи подчиненного регулирования координат.
В ЛЭТИ были развиты оригинальные идеи управления сложными взаимосвязанными электромеханическими объектами.
Большое внимание уделялось проблемам электромагнитной совместимости электропроводов с питающей сетью (ГПИ «Тяжпромэлектропроект»), в чем отражалось расширяющееся применение электропроводов с тиристорными преобразователями и современными средствами управления.
6.6.10. МИКРОПРОЦЕССОРЫ В ЭЛЕКТРОПРИВОДЕ
Создание в США на границе 60–70-х годов четырехразрядного однокристалльного микропроцессора INTEL 4004 и программируемого логического контроллера (ПЛК) PDP 14 ознаменовало новую эру в сфере управления электропривода. Уже в 70-е годы в мировой практике эти технические средства начали интенсивно вытеснять использовавшиеся ранее контактные и бесконтактные реле; к 80-м годам схему управления на восьми и более реле стало экономически целесообразно заменять ПЛК.
В сравнении с устройствами монтажной логики ПЛК обладает высокой гибкостью при отладке, он не зависит от объекта управления, снижает расходы на разработку, программирование, тестирование и запуск изделия, очень компактен, имеет высокую надежность, упрощает обслуживание системы привода. ПЛК может выполнять вычисления, обеспечивать регулирование, принятие решений, наблюдение за отработкой алгоритма управления.
В сравнении с мини-компьютером ПЛК существенно проще, он ориентирован на непосредственное общение с объектом управления. На рис. 6.51 показаны зоны рентабельного использования различных технических средств управления.
По мере развития микропроцессорных средств управления и ПЛК изменялась информационная часть электропривода: резко, почти скачкообразно, наращивались функциональные возможности в управлении координатами, во взаимодействии нескольких систем между собой и с внешней средой, в детальной диагностике состояния и защите всех элементов привода от любых нежелательных воздействий.
6.6.11. СОВРЕМЕННЫЙ ЭЛЕКТРОПРИВОД
Концептуальные изменения в развитие электропривода внесла новая элементная база силового канала — полностью управляемые ключи, появившиеся на рынке в последние. 6–7 лет, и средства управления ими. Фирмы «Тошиба», «Сименс» и др. выпустили силовые транзисторы IGBT на токи до 600 А, напряжение до 1200 В с частотами 30 кГц и выше. Эти приборы, объединенные в модули с встроенными быстрыми обратными диодами и управляемые указанными выше современными средствами, послужили основой для построения преобразователей частоты со структурой неуправляемый выпрямитель — LC-фильтр — автономный инвертор с широтно-импульсной модуляцией (ШИМ) (рис. 6.52), ставших основным техническим решением в регулируемом электроприводе переменного тока мощностью до 600 кВт. Преобразователи более мощных приводов строятся на полностью управляемых тиристорах GTO; в бытовых и других электроприводах низкого напряжения используются приборы MOSFET.
По прогнозам до 2002 г. европейский рынок регулируемых электроприводов на 68% будет состоять из приводов переменного тока, на 15 — из приводов постоянного тока, на 10 — из гидропроводов и на 7% — из механических приводов.
Нетрадиционные электромеханические устройства (линейные, поворотные, планарные многокоординатные двигатели и т.п.) в сочетании с развитыми микропроцессорными средствами управления образуют электромеханические структуры, интегрированные в технологическое оборудование и создающие принципиально новый тип технологической среды.
Интенсивно осваиваются новые виды регулируемого электропривода — вентильно-индукторный, с другими нетрадиционными электрическими машинами. В микроприводе миниатюрных роботов применяются тонкопленочные диэлектрические двигатели.
В последние годы в мире отчетливо сформировалось и интенсивно реализуется тенденция перехода от нерегулируемого электропривода к регулируемому в массовых применениях: насосы, вентиляторы, конвейеры и т.п., благодаря чему резко повышается технологический уровень оборудования, экономятся значительные энергетические ресурсы.
Электропривод сформировался сегодня как система, осуществляющая управляемое электромеханическое преобразование энергии и состоящая в общем случае из электрического (ЭП), электромеханического (ЭМП) и механического (МП) преобразователей, образующих силовой канал, измерительных преобразователей (ИП), преобразующих информацию, и управляющих устройств, входящих в информационный канал (рис. 6.53).