История электротехники
Шрифт:
Подобные фазочувствительные усилители нуждаются в уменьшении мощности потерь в выходных каскадах. Здесь важную роль играет не столько КПД каскадов, сколько решение проблемы охлаждения транзисторов. Снижение мощности потерь было достигнуто заменой постоянного питающего напряжения фазочувствительных каскадов пульсирующим, полученным непосредственно в результате выпрямления переменного напряжения сети.
Полупроводниковые приборы предоставили разработчикам схем новые возможности: наличие двух видов транзисторов — p-n-р- и п-p-n-типов дало новые решения балансных симметричных схем.
Успешно разрабатывались транзисторные стабилизаторы напряжения. Их показатели были очень высоки: хорошая стабильность, высокая эффективность, множество дополнительных
Продолжением и естественным развитием идеи высокоэффективных преобразований сигналов является использование ключевых свойств транзистора. Кажущаяся очевидной мысль о нулевых потерях мощности в идеальном ключевом элементе не сразу получила свое практическое выражение. Одним из первых завершенных транзисторных преобразователей с использованием ключевого режима стал хорошо известный генератор Ройера (С.Н. Royer, 1955 г., США) — автогенератор с магнитной связью на основе материалов с прямоугольной петлей гистерезиса. Схемы на основе подобных генераторов быстро вытеснили контактные вибропреобразователи в источниках питания. Для того чтобы ключевые режимы транзисторов можно было использовать в целях обработки аналоговой информации требовалось глубокое понимание спектральных преобразований сигнала при различных видах импульсной модуляции и существенное повышение частотных свойств транзисторов.
Одним из первых теоретических положений о возможности передачи аналоговой информации с ограниченным спектром последовательностью импульсов следует считать теорему В.А. Котельникова (1933 г.); идеи спектральных преобразований модулируемых сигналов были развиты в классических работах А.А. Харкевича. Для реализации экономичных импульсных методов обработки сигналов потребовалось достижение предельных частот транзисторов на несколько порядков выше частоты передаваемого сигнала [11.52].
Практические достижения этого нового и перспективного направления применения транзисторов были реализованы О.А. Коссовым (1964 г.) и О.А. Хасаевым (1966 г.). Важную роль в распространении знаний о транзисторах, их практическом применении в промышленной электронике сыграли ставшие периодическими выпуски сборников статей «Полупроводниковые триоды в автоматике» под редакцией Ю.И. Конева.
Значительным успехом транзисторной электроники стало создание и широкое распространение кремниевых биполярных транзисторов. Благодаря физическим свойствам кремния эти транзисторы обладают более высокой стабильностью свойств при колебаниях температуры, значительно меньшими обратными токами переходов по сравнению с германиевыми. По мере совершенствования технологии и повышения чистоты исходного материала повысились предельные напряжения на переходах с 20–50 В у первых германиевых транзисторов до нескольких сотен вольт у современных кремниевых. Так же быстро росли частотные свойства приборов: от десятков и сотен килогерц у первых сплавных германиевых приборов до десятков мегагерц у современных кремниевых.
Изобретение в 50-е годы полевых (униполярных) транзисторов вначале не оставило заметного следа в полупроводниковой схемотехнике. Положение изменилось с разработкой новых технологий изготовления переходов. Современные полевые транзисторы не уступают биполярным по предельным значениям параметров и частотным свойствам и образуют самостоятельную группу с явно выраженными свойствами и областью применения.
Было бы несправедливо описывать развитие полупроводниковой электроники только с позиции совершенствования и обновления элементной базы. Создание новых устройств и систем промышленной электроники затронуло все сферы производства. Промышленность успешно освоила автоматизированное проектирование и производство печатных плат, беспроводной монтаж, методы входного и пооперационного контроля изделия. Тем не менее производство новых типов изделий проходило последовательно одни и те же этапы: задание на разработку, создание структурной и функциональной схем, разработка принципиальной схемы с использованием доступных и разрешенных комплектующих элементов; далее конструирования, подготовки производства и т.д. Каждая новая
Новой сферой применения средств электроники стала обработка логических сигналов. До сих пор предполагалось, что любой сигнал содержит информацию, которая ставится в соответствие с количественной характеристикой сигнала: мгновенным значением аналогового напряжения, частотой гармонического носителя, длительностью импульса в последовательности.
Наряду с такими сигналами все большее применение находили логические сигналы, которые могли принимать фиксированное множество значений и отвечали на вопрос, принадлежит или не принадлежит данный сигнал к одному из подмножеств.
Общеизвестными стали двоичные (бинарные) сигналы, которые давали однозначный ответ на вопрос, истинно или ложно то или иное положение. Информация в таком сигнале содержалась не в уровне сигнала, а в его принадлежности к некоторому множеству. У бинарных сигналов это множество соответствует двум различным значениям, которые определяются как высокий (единичный) и низкий (нулевой) уровень. С логическими бинарными сигналами часто встречаются в технике, когда возникает необходимость отобразить состояние контакта (замкнут, разомкнут), транзисторного ключа (насыщен или находится в режиме отсечки). На основе логических переменных были введены логические функции. Примером логической функции может служить правило функционирования некоторого устройства: агрегат должен быть включен, если присутствует напряжение сети, температура не вышла из допустимых пределов, а с момента подачи сигнала на включение прошло не менее 5 с. На начальном этапе развития логических устройств в 50-е годы была осознана возможность реализации любых алгоритмов логического управления при ограниченном элементном базисе. Достаточно иметь весьма ограниченный набор типовых логических элементов, например, И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ, чтобы из них можно было создать электронное устройство любой сложности и любого функционального назначения.
Первые типовые логические элементы создавались на основе транзисторно-резисторных, диодно-транзисторных, транзисторно-транзисторных ячеек (РТЛ, ДТЛ, ТТЛ), выполняемых из дискретных компонентов навесным монтажем или на печатных платах. Конструктивно они выполнялись в виде компактного параллелепипеда в пластмассовом корпусе, иногда залитого эпоксидной смолой (рис. 11.12). Монолитный брусок с набором внешних выводов имел хорошие механические свойства. Слабым местом устройств были внешние выводы и соединения. Проектирование логических устройств означало полное, исчерпывающее описание функционирования на языке булевой алгебры, приведение к выбранному элементному базису и схемотехническое (топологическое) проектирование.
11.4.5. ИНТЕГРАЛЬНЫЕ ЛОГИЧЕСКИЕ И АНАЛОГОВЫЕ МИКРОСХЕМЫ
Интеграция в электронике проявилась как результат объединения нескольких элементов схем в один функционально и конструктивно завершенный узел. На этом этапе развития полупроводниковой схемотехники произошло удачное объединение микроэлектроники с развитым аппаратом логического проектирования. В 50–60-х годах было освоено массовое производство интегральных схем малой степени интеграции (до нескольких десятков логических элементов в одном корпусе). На их основе стало возможным проектирование устройств, выполняющих любые требуемые функции.