История электротехники
Шрифт:
В конце XIX в. были разработаны также электродинамические приборы — наиболее точные для своего времени средства измерений на переменном токе промышленной частоты. Они стали широко использоваться в качестве образцовых переносных амперметров, вольтметров и, главное, фазометров. Эти приборы обладали важным свойством: после градуировки на постоянном токе они могли использоваться как на постоянном, так и на переменном токе практически без потери точности.
Предшественниками этих приборов были электродинамические весы У. Кельвина, а также крутильные электродинамические приборы Сименса, выпускавшиеся с 1883 г. Ценными качествами
В 90-х годах XIX в. появились первые стрелочные электродинамические приборы. В XX в. были предложены многочисленные конструкции этих приборов, обеспечивших измерения с высокой точностью токов, напряжений, мощности в однофазных и трехфазных цепях, фазовых сдвигов и частоты. До последнего времени выпускались амперметры, вольтметры и ваттметры класса 0,05, фазометры класса 0,1; однако наибольшее распространение получили электродинамические ваттметры класса 0,5.
Высокая точность электродинамических приборов связана с отсутствием магнитопровода в конструкции их измерительного механизма. Данная особенность объясняет и главный недостаток подобных механизмов: малый вращающий момент, что не позволяет строить щитовые приборы, работающие в сравнительно жестких условиях эксплуатации. Этот недостаток удалось преодолеть в ферродинамических приборах ценой потери точности (их класс точности обычно не выше 0,5).
Одним из первых получил патент на конструкцию ферродинамического ваттметра А. Лотц (Германия, 1902 г.), но его прибор не был внедрен в производство. Однако развитие электротехники ставило перед инженерами задачи, которые решались наиболее просто путем применения ферродинамических приборов. Например, необходимость разработки ферродинамических ваттметров встала перед фирмой «Сименс и Гальске» в начале XX в., когда при приемочных испытаниях двигателей постоянного тока для прокатных станов потребовались точные измерения мощности. Речь шла при этом о токах до 10 кА и напряжениях до 1 кВ. Первоначально задача решалась путем записи тока и напряжения двумя приборами с последующим вычислением мощности, однако это не обеспечивало требуемой точности. В конце концов было решено изготовить специальный ваттметр. В 1909 г. этот ваттметр с разомкнутой магнитной цепью и магнитным шунтом для компенсации погрешностей был создан. Примерно в те же годы различные конструкции ферродинамических ваттметров были запатентованы в Англии.
Один из первых патентов на ферродинамический прибор был получен в 1909 г. М.О. Доливо-Добровольским (Россия).
В последующие годы XX в. ферродинамические приборы получили широкое распространение в качестве щитовых и регистрирующих.
С появлением первых электростанций возникла потребность в счетчиках электрической энергии. В качестве одного из первых счетчиков электроэнергии постоянного тока Т. Эдисон использовал вольтаметр, предложенный еще М. Фарадеем для измерения количества электричества. В этом приборе 0,001-я часть измеряемого электрического тока пропускалась через раствор азотно-кислого серебра. Ежемесячно приходилось измерять приращение массы катода, по которому рассчитывали расход электроэнергии.
Через несколько лет в Европе и США были изобретены более совершенные динамометрические и магнитомоторные счетчики постоянного тока, а также индукционные переменного тока (счетчики Арона, Бореля, Томсона, Ферранти, Шалленбергера и др.).
Создание последних стало возможным после того, как в 1888 г. Г. Феррарису и Н. Тесла независимо друг от друга удалось получить вращающееся магнитное поле. Трехфазные счетчики строились на основе однофазных в соответствии со схемами измерения энергии в трехфазных цепях.
Идея вращающегося магнитного поля лежала также в основе создания «приборов Феррариса» — индукционных ваттметров, амперметров, вольтметров и других средств измерений. Вращающий момент в них пропорционален измеряемой величине, а противодействующий — углу поворота подвижной части, как в обычных стрелочных приборах. Оригинальные индукционные приборы — фазометр и измеритель реактивной мощности — одним из первых разработал и внедрил в фирме АЕГ М.О. Доливо-Добровольский, запатентовавший эти приборы в 1892 г. В конце прошлого века фирма АЕГ приступила к серийному производству стрелочных индукционных приборов различного назначения.
В 20-е годы XX в. индукционные приборы начали постепенно вытесняться электромеханическими приборами других систем; в настоящее время сохранились лишь индукционные счетчики электроэнергии.
Бурно развивающаяся электроизмерительная техника требовала соответствующего метрологического обеспечения. Первые попытки создания мер электрических величин относятся к середине XIX в. Ученые разных стран начали создавать свои меры, принимаемые ими в качестве эталонов, а затем производили измерения в единицах, воспроизводимых этими мерами.
Так, например, во Франции эталоном единицы сопротивления служила железная проволока диаметром 4 мм и длиной 1 км (единица Бреге). В России Б.С. Якоби предложил сделать аналогичный эталон из медной проволоки, а в Германии таким эталоном являлся столб ртути длиной 1 м и сечением 1 мм.
К 1881 г. насчитывалось 15 различных единиц сопротивления, 8 единиц ЭДС и 5 единиц тока. Естественно, что такое многообразие крайне затрудняло сопоставление результатов измерений. Требовалось введение общепринятых международных единиц измерения электрических и магнитных величин.
В 1881 г. в Париже собрался 1-й Международный электротехнический конгресс. Он принял две системы единиц: электростатическую (СГСЭ) и электромагнитную (СГСМ), которые ранее были разработаны и приняты в 1862 г. Британской ассоциацией развития наук. При этом в дополнение к уже принятым Британской ассоциацией практическим единицам — ому, вольту и фараде — конгресс ввел еще ампер и кулон. На 2-м конгрессе в 1889 г. в список практических единиц были включены еще три: джоуль, ватт и квадрант (позже последней единице было присвоено наименование «Генри»).
На 3-м Международном электротехническом конгрессе (Чикаго, 1893 г.) были приняты спецификации для создания эталонов ома и ампера, которым было суждено на многие годы стать основой унификации электрических измерений. Конгресс постановил, что ом следует воспроизводить при температуре таяния льда с помощью столба ртути длиной 106,3 см и массой 14,4521 г, а ампер — с помощью вольтаметра, в котором из раствора азотно-кислого серебра должно выделяться серебро со скоростью 1,118 мг/с. Эти единицы были названы международными в отличие от абсолютных, теоретических единиц, принятых ранее.