История электротехники
Шрифт:
Следующий шаг на пути перехода от разработки структур схем к разработке функций, выполняемых БИС, был сделан с изобретением ПЛМ. Матрица обладает более широкими функциональными возможностями по сравнению с программируемой памятью. Однако промышленный выпуск ПЛМ не стал сколько-нибудь заметной вехой в создании интегральных средств автоматизации.
11.4.7. МИКРОПРОЦЕССОРЫ И МИКРОКОНТРОЛЛЕРЫ
Создание цифровых средств управления на основе БИС стало возможным после появления микропроцессоров (МП). В 1971 г. американская фирма «Intel» выпустила первое устройство («Intel 4004»), предназначенное для выполнения вычислительных операций
Микропроцессор — это программно-управляемое устройство, осуществляющее обработку цифровой информации, выполненное в виде одной или нескольких БИС.
По существу, все вычислительные средства имеют сходное устройство и близкие принципы выполнения операций. Поэтому современные БИС микропроцессоров воспроизводят те структуры и операции, которые хорошо известны разработчикам и пользователям вычислительных средств. Различают два класса микропроцессорных систем: микроЭВМ и микроконтроллеры. Первые предназначены главным образом для вычислительных работ высокой производительности. Микроконтроллеры — управляющие системы, используемые для автоматизации управления технологическими операциями. Контроллеры характеризуются сравнительно малым объемом памяти, специфичным набором команд, наличием встроенных устройств ввода-вывода (УВВ).
В качестве УВВ могут использоваться АЦП и ЦАП, фотосчитывающие устройства, средства отображения информации и ее регистрации, концевые выключатели, терморезисторы и термопары, датчики перемещения, угла поворота и иные подобные устройства.
До появления МП стратегия электронных устройств автоматики формулировалась так: одна функция или группа взаимосвязанных функций — одно устройство. Появление новых функциональных задач означало необходимость разработки новых устройств. МП и их функциональное продолжение — микроконтроллеры нарушили эту стратегию. Теперь она может формулироваться иначе: если устройство выполняет операцию или достаточно длинную последовательность операций, которые могут быть реализованы с помощью процессоров, то поочередное их выполнение позволит одному процессору обслуживать несколько устройств и решать различные задачи. Благодаря этому аппаратные затраты на автоматизацию существенно сокращаются. Поскольку быстродействие процессора велико (одна операция выполняется за долю микросекунды), то последовательный характер обработки информации разных источников может быть незаметным для пользователя. Управление процессорами в системе, которая обслуживается микроконтроллером, потребовало нового способа мышления от разработчиков средств автоматизации. Основные изменения в подходах связаны с цифровым способом представления и обработки информации; необходимостью представления любой операции в форме, которая может быть выполнена МП за конечное число машинных операций. Важнейшей частью разработки становится составление алгоритма выполнения операции. Возможность решения многих задач обусловлена тем, что полученный результат может быть превращен в соответствующий управляющий сигнал, который запоминается и поступает на выход в течение некоторого времени; в это время процессор освобождается для ввода данных других источников информации, обработки их по другим алгоритмам или программам и подачи сигналов управления на другие выводы контроллера.
Процесс управления, таким образом, практически не отличается от выполнения вычислений по программе; возможности микроконтроллера могут быть более скромными, чем у вычислительной машины, в отношении точности (разрядности) и объема памяти. Микропроцессорное управление промышленными объектами может строиться на иерархическом принципе: процесс управления реализует дерево целей — совокупность ярусов, где каждый ярус описывает управление на соответствующем уровне иерархии.
Наиболее ответственные задачи решает ЭВМ высшего уровня, которая описывает поведение частей системы в более общем виде; выходная
Примером подобных иерархических систем могут служить микропроцессорные средства управления лазерной технологической установкой. Такая установка содержит несколько подсистем (поддержания вакуума и обеспечения газовой среды; обеспечения скорости прокачки газа; электропитания для поддержания оптимальных параметров тлеющего разряда; перемещения обрабатываемой детали и т.п.). Каждая подсистема выполняет локальную задачу, совокупность их обеспечивает требуемое качество процесса в целом.
Крупносерийный выпуск интегральных схем микроконтроллеров со встроенными таймерами, АЦП и ЦАП имеющих режим ожидания с малым энергопотреблением, сделал рентабельным их применение даже в сравнительно простых устройствах бытовой техники, автомобилях и т.д.
Каждая из составных частей микропроцессорной системы должна быть связана с процессором. Принятая так называемая магистральная система связей обладает большой гибкостью, способностью к модификации структуры и ее наращиванию.
Успехи в развитии интегральной электроники привели к появлению интегральных схем цифровых сигнальных процессоров. Благодаря большому быстродействию и высокой разрядности они дают возможность, например, анализировать с высокой точностью форму тока энергетической установки и управлять компенсатором неактивной мощности. С этой целью за один период напряжения сети (20 мс) выполняются тысячи операций с многоразрядными числами и осуществляется управление силовым коммутатором с широтно-импульсной модуляцией с тактовой частотой до 10 кГц.
Современные микроконтроллеры используются, в частности, для комплексной автоматизации автомобиля. Сюда входит управление двигателем и оптимизация его режима, управление антиблокировочной системой, климатизация салона, управление многочисленными механизмами — от стеклоочистителей до локаторов опасного сближения.
11.1. Миткевич В.Ф. Алюминиевый выпрямитель переменного тока и его применение //.Электричество. 1901. № 2 и 3.
11.2. Гершун А.Л. Некоторые свойства выпрямленного переменного тока // Электричество. 1901. № 22.
11.3. Теория дуги переменного тока и ее применение (обзорная статья) // Электричество. 1906. №20 и 22.
11.4. Ртутные выпрямители переменного тока (обзорная статья) // Электричество. 1911. №5.
11.5. Капцов Н.А. Физические явления в вакууме и газах. М.: Гостехиздат, 1933.
11.6. Фабрикант В.А. К количественной теории возбуждения атомов в газовом разряде// ЖЭТФ. 1938. Т. 8. №5.
11.7. Крапивин В.К. Производство ртутных выпрямителей большой мощности на заводе «Электросила» // Электричество. 1925. № 10.
11.8. Клярфельд Б.Н. Потенциал зажигания гелия, неона и аргона в присутствии паров ртути // ЖТФ. 1932. Т. 2. № 7–8.
11.9. Четверикова М.М. Управляемая электрическим полем сетка в ртутном преобразователе // Электричество. 1933. № 12.
1.10. Петухов Н.Н. Асташев М.А. Опыты с ртутным выпрямителем, управляемым с помощью сеток // Электричество. 1934. № 3.
1.11. Вологдин В.П. Выпрямители. М.: ОНТИ, 1936.
1.12. Каганов ИЛ. Электронные и ионные преобразователи тока. М.: Госэнергоиздат, 1937.
1.13. Дроздов В.И., Кении И.М. Падение в дуге металлического ртутного выпрямителя // Электричество. 1937. № 7.
1.14. Крапивин В.К. Современные ртутные выпрямители // Электричество. 1939. № 6.
1.15. Каганов ИЛ. Электронные и ионные преобразователи. М.: Госэнергоиздат, 1940.
1.16. Антик И.В., Бутаев Ф.И., Эттингер Е.Л. Одноанодные ртутные выпрямители // Вестник электропромышленности. 1942. № 4–5.
1.17. Грановский В.Л. Распад плазмы электрического разряда низкого давления // ЖТФ. 1943. Т. 13. С. 1363.