История электротехники
Шрифт:
В этой серии (рис. 5.9) коммутационные перенапряжения воздействуют на полное рабочее сопротивление, а при грозовых перенапряжениях с большими амплитудами импульсных токов часть рабочего сопротивления шунтируется ИП для снижения грозозащитного уровня.
Разработка и внедрение отечественных магнитно-вентильных разрядников серий РВМГ и РВМК, защищенных авторскими свидетельствами, позволили поднять номинальное напряжение ЛЭП с 400 до 500 кВ без изменения уровней изоляции всего комплекса электрооборудования, что было отмечено Ленинской премией в 1970 г. (А.А. Акопян, А.В. Панов и др.).
Серия РВМК, специально предназначенная для ограничения как грозовых, так и тяжелых режимов внутренних
Разработка высоконелинейных резисторов на базе оксида цинка ZnO послужила основой создания разрядника без искровых промежутков, именуемого в отечественной практике ограничителем перенапряжений нелинейным (ОПН). Высокая нелинейность позволяет оставлять его включенным при наибольшем допустимом напряжении неограниченно долго. При этом уровень ограничения перенапряжений определяется только его вольт-амперной характеристикой (ВАХ), охватывая и область возможных коммутационных перенапряжений с меньшими амплитудами токов.
Следует подчеркнуть, что вентильные разрядники после поглощения энергии при перенапряжении должны поглощать еще значительную часть энергии при протекании сопровождающего тока, который в ОПН практически отсутствует (порядка нескольких миллиампер).
Однозначность защитных характеристик, упрощение конструкции, снижение габаритов при одновременном улучшении защитных характеристик столь очевидны, что ведущие фирмы отказались от производства традиционных вентильных разрядников. Кроме того, наметилась тенденция замены обычного фарфорового корпуса на полимерные конструкции, позволяющие уменьшить массогабаритные показатели, увеличить длины пути утечки, снизить повреждения при транспортировке и взрывобезопасность.
Основными параметрами ОПН являются:
наибольшее допустимое напряжение (UНД или UC по аббревиатуре МЭК 99–4) — это действующее значение напряжения промышленной частоты, которое допускается на ОПН неограниченно долго и не приводит к потере теплового равновесия после поглощения энергии в процессе ограничения перенапряжений и воздействия повышенного напряжения в течение нормированного времени. Значение UНД в большой степени зависит от возможной деградации (старения) высоконелинейных резисторов в процессе эксплуатации;
пропускная способность ОПН — это способность многократно (обычно 18–20 раз) поглотить энергию при ограничении перенапряжения без разрушения и изменения характеристик. Естественно, что чем ниже уровень ограничения перенапряжений, тем больше должна быть пропускная способность ОПН;
остающиеся напряжения — это напряжения на ОПН при воздействии импульсов тока различной амплитуды и формы, т.е. вольт-амперные характеристики ОПН, которые характеризуют уровень ограничения перенапряжений при импульсных воздействиях. Для грозовых воздействий принимаются импульсные токи длительностью 8/20 мкс, а для коммутационных — с фронтом 30 мкс и более;
допустимые напряжения промышленной частоты в зависимости от времени их приложения. ОПН, ограничив импульсные напряжения и поглотив определенную энергию, может оказаться на некоторое время под воздействием напряжения промышленной частоты выше чем UНД (например, 1,4UНД
Способность ОПН выдерживать повышенные напряжения промышленной частоты задается в зависимости от времени. Все нормируемые параметры ОПН подтверждаются соответствующими испытаниями, объем и методы которых определены международным стандартом МЭК 99–4.
Первые ОПН в практике России были разработаны ПО «Электрокерамика» (Ленинград) и установлены на ряде сибирских электростанций.
Освоение технологии производства нестарящихся высоконелинейных резисторов типа МНР и конструкций с полимерной изоляцией (ВЭИ) позволило обеспечить разработку и производство серии ОПН на классы напряжения от 6 до 220 кВ, отвечающих международному стандарту МЭК 99–4 и не уступающих мировым аналогам.
5.4.3. КООРДИНАЦИЯ ИЗОЛЯЦИИ И МЕТОДЫ ЕЕ ИСПЫТАНИЙ
Координацией изоляции электрооборудования называется взаимное согласование значений воздействующих напряжений (перенапряжений), электрических характеристик защитной аппаратуры и изоляции оборудования, обеспечивающее надежную работу и высокую экономичность электроустановок. На основе такого согласования для каждого класса напряжения устанавливаются испытательные напряжения промышленной частоты и импульсные испытательные напряжения, которые являются нормой, обязательной к выполнению.
Первые нормативные требования на уровни изоляции оборудования напряжением до 35 кВ были изложены в «Правилах и нормах IX Всесоюзного электротехнического съезда» (1927 г.). В них были нормированы испытания изоляции трансформаторов, вводов и опорных изоляторов только напряжением промышленной частоты.
В 1936 г. в ВЭИ был разработан «Проект норм испытаний электрической прочности изоляции силовых трансформаторов». В нем наряду с испытаниями одноминутными напряжениями промышленной частоты были предложены импульсные испытания трансформаторов напряжением до 220 кВ. Нормы на испытательные напряжения промышленной частоты вошли в ОСТ Наркомтяжпрома № 2514, введенный с 1937 г.
Принципы стандартизации импульсной прочности и уровни изоляции, предложенные МЭЗ и ВЭИ (А.В. Панов, А.В. Сапожников, В.А. Карасёв и др.) были одобрены в 1940 г. на Всесоюзном совещании по трансформаторостроению. Предполагалось согласовать их в течение 1941 г. с заинтересованными организациями и представить на утверждение проект стандарта. Однако в связи с военными условиями пришлось ограничиться выпуском в 1941 г. ГОСТ 1516–42 «Напряжения испытательные и разрядные высоковольтных трансформаторов, аппаратов и изоляторов, предназначенных для установок, связанных с воздушными сетями» без требований к импульсной прочности изоляции.
Взамен ГОСТ 1516–42 в 1961 г. введен ГОСТ 1516–60, разработанный в ВЭИ. Стандарт охватывал нормы и методы испытаний, в том числе импульсным напряжением, электрооборудования 3–220 кВ.
В последующие годы работа по подготовке нового издания стандарта завершилась утверждением ГОСТ 1516–68 со сроком введения в 1969 г. При разработке этого стандарта учитывалась необходимость его сближения с рекомендациями МЭК.
Головной разработчик стандартов — ВЭИ. Нормативные требования, заложенные в стандарты, основываются на теоретических и экспериментальных исследованиях научных лабораторий института. Большой вклад в разработку внесли специалисты МЭЗ, заводов «Электроаппарат» и «Изолятор», ВИТ и др. Автором проекта ГОСТ 1516–68 и предшествовавших выпусков стандарта был А.В. Панов. В подготовке проекта ГОСТ 1516–68 участвовал А.В. Сапожников. Авторы проекта ГОСТ 1516–73 А.В. Сапожников и В.К. Кожухов [5.27].