История греческой философии в её связи с наукой
Шрифт:
Пространство, как видим, определяется Платоном как нечто отличное, с одной стороны, от идей, постигаемых мыслью (n"hsiV), которые мы назвали бы по этой причине логическим объектом (для Платона логическое имеет статус единственно истинного бытия), а с другой - от чувственных вещей, воспринимаемых "ощущением" (aЗsJhsiV). Пространство лежит как бы между этими мирами в том смысле, что оно имеет признаки как первого, так и второго, а именно: подобно идеям, пространство вечно, неразрушимо, неизменно - более того, оно и воспринимается не через ощущение. Но сходство его с чувственным миром в том, что воспринимается оно все же не с помощью мышления. Та способность, с помощью которой мы воспринимаем пространство, квалифицируется Платоном весьма неопределенно -
Интересно, что Платон сравнивает видение пространства с видением во сне: "Мы видим его (пространство.
– П.Г.) как бы в грезах и утверждаем, будто это бытие непременно должно быть где-то, в каком-то месте и занимать какое-то пространство, а то, что не находится ни на земле, ни на небесах, будто бы и не существует".
Сравнение "незаконнорожденного" постижения пространства с видением во сне, очевидно, весьма для Платона важно, потому что он употребляет это сравнение не однажды. В диалоге "Государство", говоря о геометрии и ее объектах, Платон вновь пользуется этим сравнением: "Что касается остальных наук, которые, как мы говорили, пытаются постичь хоть что-нибудь из бытия (речь идет о геометрии и тех науках, которые следуют за ней.
– П.Г.), то им всего лишь снится бытие, а наяву им невозможно его увидеть, пока они, пользуясь своими предположениями, будут сохранять их незыблемыми и не отдавать в них отчета. У кого началом служит то, чего он не знает, а заключение и середина состоят из того, что нельзя сплести воедино, может ли подобного рода несогласованность когда-либо стать знанием?"
Пространство мы видим как бы во сне, мы его как бы и видим и в то же время не можем постигнуть в понятиях, - и вот оно-то, по мнению Платона, служит началом для геометров.
Почему, говоря о пространстве, Платон постоянно прибегает к образу сна? Невольно приходит на ум известный платоновский символ пещеры: ведь узники в пещере принимают за истину "тени проносимых мимо предметов", так же точно как человек во сне принимает за реальность лишь "тени". Пространство в этом смысле у Платона - это не тени, т.е. не чувственные вещи, а как бы сама стихия сна, пространство - это сам сон как то состояние, в котором мы за вещи принимаем лишь тени вещей. И так же, как, проснувшись, мы воспринимаем виденное во сне несколько смутно, не можем дать себе в нем отчет, оно как бы брезжит, не позволяет себя схватить и остановить, определить, - так же не дает себя постигнуть с помощью понятий разума и пространство.
Итак, Платон рассматривает пространство как предпосылку существования геометрических объектов, как то "начало", которого сами геометры "не знают" и потому должны постулировать его свойства в качестве недоказуемых первых положений своей науки.
Платон и "Начала" Евклида
В первой книге "Начал" Евклид формулирует исходные положения геометрии, которые не могут быть доказаны, но на базе которых только и могут быть получены остальные - выводные - положения. Эти недоказуемые утверждения Евклид подразделяет на три группы: определения ("roi), постулаты (aДt mata) и общие понятия - аксиомы. У самого Евклида эта третья группа положений носит название koinaИ Ьnnoiai - "общие представления", "понятия"; на латинский язык это выражение обычно переводили как "communes animi conceptiones" - "общие понятия души". У Прокла в комментарии к Евклиду первая группа положений называется также гипотезами (?p"JesiV), а третья группа положений носит название аксиомы (?xiиmata).
На каком основании Евклид вводит эти три подразделения? Чем отличаются определения от постулатов и аксиом?
Рассмотрим сначала, что такое определения, или допущения (гипотезы), как их именует платоник Прокл. В первой книге Евклида их 23. Они в свою очередь могут быть подразделены на
Что касается определений первой группы, то, как отмечает М.Я. Выгодский, "с древнейших времен и до наших дней эти определения в наибольшей степени были предметом критики". Приведем главнейшие из определений этой первой группы.
1. Точка есть то, что не имеет частей.
2. Линия же - длина без ширины.
3. Концы же линии - точки.
4. Прямая линия есть та, которая равно расположена относительно точки на ней.
5. Поверхность есть то, что имеет только длину и ширину.
6. Концы же поверхности - линии.
Очевидно, именно такого рода определения имеет в виду Платон в следующем своем рассуждении: "Я думаю, ты знаешь, что те, кто занимается геометрией, счетом и тому подобным, предполагают в любом своем исследовании, будто им известно, что такое чет и нечет, фигуры, три вида углов и прочее в том же роде. Это они принимают за исходные положения и не считают нужным отдавать в них отчет ни себе, ни другим, словно это всякому и без того ясно".
Таким образом, термин "roi, или ?poJЪseiV, переводимый на русский язык как "определения", означает скорее "гипотезы", т.е. предположения, допущения, которые далее не доказываются. Как поясняет Аристотель, определения "ничего не говорят о том, существует ли данный предмет или нет", и это, надо полагать, их специфическое отличие от постулатов. Точно так же ничего не говорят о существовании определяемого предмета и аксиомы, т.е. "общие понятия".
1. Равные одному и тому же равны между собой.
2. И если к равным прибавляют равные, то и целые будут равны.
3. И если от равных отнимаются равные, то остатки будут равны.
4. И если к неравным прибавляются равные, то целые будут не равны.
5. И удвоенные одного и того же равны между собой.
6. И половины одного и того же равны между собой.
7. И совмещающиеся друг с другом равны между собой.
8. И целое больше части.
9. И две прямые не содержат пространства.
Как нетрудно видеть, все аксиомы, кроме 7-й и 9-й, одинаково могут быть отнесены как к геометрии, так и арифметике; что же касается 7-й и 9-й, то Л. Хис считает их позднейшей вставкой, и его мнение разделяет М.Я. Выгодский.
Аксиомы, как и определения, ничего не говорят о существовании определяемого ими объекта. Отличие определений от аксиом легко заметить: определения имеют более специальный характер, они вводят именно геометрические объекты, аксиомы же (по крайней мере 1Ч6-· и 8-я) могут иметь значение и для геометрии, и для арифметики, т.е. носят более общий характер. Это различие подтверждается и тем, что Евклид формулирует специальные определения в начале каждой из книг своего сочинения; что же касается аксиом, то они предпосылаются сразу ко всем книгам.
По этому принципу отличал определения от аксиом и Аристотель. В "Аналитике второй" читаем: "Из тех начал, которые применяются в доказывающих науках, одни свойственны каждой науке в отдельности, другие - общи всем... Свойственным <лишь одной науке> является, например, то, что линия такая-то и прямое - такое-то. Общее же, например, то, что если от равного отнять равные <части>, то остаются равные же <части>. Каждым из таких <общих положений> можно пользоваться, поскольку оно относится к роду, подчиненному данной науке, ибо оно будет иметь одинаковую силу, если и не брать его для всего <подходящего>, но <в геометрии> - в отношении величин, а в арифметике - в отношении чисел". И действительно, аксиомы у Евклида формулируются в самом начале; что же касается определений, то они свои в начале каждой книги.