История греческой философии в её связи с наукой
Шрифт:
Таким образом, число внутренне связано с прекрасным, благим и священным, а потому отнюдь не есть нечто нейтральное по отношению к ценностям. Именно с понятием числа Платон связывает порядок, упорядоченность, ритм, склад (лад), гармонию, согласованность, меру, соразмерность, а все это - атрибуты не только прекрасного, но и доброго, благого, оно же и истинное. Поэтому в самом числе выделяется и подчеркивается прежде всего то, что несет эти атрибуты.
Первой среди математических наук Платон считает арифметику. Арифметика, "главная и первая из наук - это наука о самих числах, но не о тех, что имеют предметное выражение, а вообще о зарождении понятий "чет" и "нечет" и о том значении, которое они имеют по отношению к природе вещей. Кто это усвоил, тот может перейти к тому, что носит весьма смешное имя геометрии. На самом деле ясно, что это наука о том, как выразить на плоскости числа, по природе своей неподобные".
Два числа, ab и cd, называются подобными в том случае, если их множители "стороны" (как
"Вслед за этой наукой идет еще одна, ей подобная: люди, ею занимающиеся, также назвали ее геометрией. Наука эта изучает тела, имеющие три измерения и либо подобные друг другу по своей кубической природе, либо неподобные, приводимые к подобию с помощью искусства". Речь идет, как нетрудно заметить, о стереометрии, которой Платон отводил важное место среди математических наук. Главной ее задачей он тоже считал установление пропорциональных отношений.
В сочетаниях Платона рассматриваются три вида пропорций: арифметическая, геометрическая и гармоническая. Так, в "Тимее", объясняя принцип построения космоса демиургом, Платон приводит сложное числовое построение, в основе которого лежит система пропорциональных отношений: "...в каждом промежутке было по два средних члена, из которых один превышал меньший из кратных членов на такую же его часть, на какую часть превышал его больший, а другой превышал меньший крайний член и уступал большему на одинаковое число". Здесь Платон дает определение гармонической и арифметической пропорции. Если средний член превышает меньший из крайних на такую его часть, на какую сам он превышается большим крайним членом, мы имеем гармоническую пропорцию. Так, для двух чисел - 6 и 12 - гармонической средней будет 8. Гармоническая пропорция - это 6, 8, 12, т.е. 1, 11/3, 2. Если же средний член превышает меньший из крайних на такое же число, на какое его самого превышает больший крайний, то пропорция будет арифметической: 6, 9, 12 или 1, 11/2, 2. Есть у Платона и третий вид пропорции, хотя он его не определяет в приведенном отрывке, - геометрическая пропорция: второй член должен так относиться к третьему, как первый - ко второму: 1, 2, 4.
Таким образом, именно теория пропорций была в центре математических исследований, проводившихся в Академии, и не случайно такие математики, как Теэтет и Евдокс Книдский, если доверять античным источникам, уделяли большое внимание этой теме. Так, О. Беккер полагает, что V и VI книги "Начал" Евклида, содержащие теорию пропорций, принадлежат Евдоксу, с чем согласен также и ¤.?. ван дер Варден.
Последовательный ряд наук - арифметика, геометрия и стереометрия продолжается еще одной наукой - астрономией. Астрономия - четвертая в ряду математических наук, но в то же время она как бы возвращает нас и к началу ряда, поскольку, как мы помним, по Платону, арифметика обязана своим возникновением созерцанию Неба и происходящих в нем перемен. Вот что пишет Платон о месте астрономии среди других наук и о ее предмете: " "Завершением их (наук.
– П.Г.). должно служить рассмотрение божественного происхождения и прекраснейшей и божественной природы зримых вещей. Бог дал созерцать ее людям, но без только что разобранных наук никто этого не может, хотя бы кто и похвалялся тем, что он легко все схватывает... Нам надо познать точность времени, а именно, с какой точностью совершаются все небесные кругообращения... Всякая геометрическая фигура, любое сочетание чисел или гармоническое единство имеют сходство с кругообращением звезд; следовательно, единичное для того, кто надлежащим образом это усвоил, разъясняет и все остальные".
Отсюда можно видеть, что астрономия имеет своим предметом закономерность небесных движений, выраженную в точных числовых соотношениях. В этом смысле астрономия - тоже наука математическая, предполагающая знание арифметики и геометрии. Более того, как утверждает Платон, в движениях небесных тел находят свое как бы телесное воплощение математические отношения, изучаемые тремя первыми математическими науками. А потому изучение одной из этих наук, в сущности, уже есть и изучение остальных, ибо их предмет в конце концов один, только берется в разных аспектах. Видимо, так можно истолковать последнее предложение приведенного отрывка. Это опять-таки близко к пифагорейской традиции, согласно которой определенное сочетание чисел соответствует правильному движению небесных сфер и гармоническому сочетанию звуков. Гармония чисел, движений и тонов - одна и та же гармония, и ее чистое выражение - математическая пропорция.
Астрономия
Напротив, в том случае если ее рассматривают не как путь к высшему роду знания, которое Платон называет диалектикой, а как высшее из возможных познаний само по себе, то впадают в грубое заблуждение. При этом, как характерно выражается Платон, "возводят астрономию до степени философии", т.е. превращают ее из средства в самоцель. "Если заниматься астрономией таким образом, как те, кто возводит ее до степени философии, - говорит Платон, - то она даже слишком обращает наши взоры вниз".
Каким образом изучение одного и того же предмета - законов движения небесных тел - может иметь столь различные, даже противоположные результаты? В чем здесь дело и против чего тут выступает Платон? "Пожалуй, ты еще скажешь, - обращается Сократ к своему собеседнику Главкону, - будто если кто-нибудь, запрокинув голову, разглядывает узоры на потолке и при этом кое-что распознает, то он видит это при помощи мышления, а не глазами... Глядит ли кто, разинув рот, вверх или же, прищурившись, вниз, когда пытается с помощью ощущений что-либо распознать, все равно, утверждаю я, он никогда этого не постигнет, потому что для подобного рода вещей не существует познания и человек при этом смотрит не вверх, а вниз, хотя бы он и лежал ничком на земле или умел плавать на спине в море".
Вполне понятно, что Платон считает невозможным познание с помощью ощущений, "глазами", ибо в действительности научное познание осуществляется с помощью мышления. Поэтому эмпирические явления не могут быть, согласно Платону, предметом научного исследования - таковыми являются только предметы идеальные или "промежуточные", а именно числа, фигуры и их соотношения. Постигаются же последние "разумом и рассудком, но не зрением". Что же касается эмпирически данных объектов астрономии, то ими, так же как и чертежами в геометрии, можно пользоваться только как подсобным материалом, ибо они никогда не тождественны тем идеализациям, которые составляют подлинный предмет изучения в математике: "...небесным узором надо пользоваться как пособием для изучения подлинного бытия, подобно тому как если бы нам подвернулись чертежи Дедала или какого-нибудь иного мастера либо художника, отлично и старательно вычерченные. Кто сведущ в геометрии, тот, взглянув на них, нашел бы прекрасным их выполнение, но было бы смешно их всерьез рассматривать как источник истинного познания равенства, удвоения или каких-либо иных отношений".
Итак, небесные тела и их видимое движение уподоблены Платоном чертежам в геометрии, а потому астроном должен видеть в них только вспомогательное средство для своей науки - не больше того. Отсюда парадоксальный вывод Платона, который привел в дальнейшем к жесткому разделению эмпирического и философско-теоретического познания, особенно в средневековой науке: "Значит, мы будем изучать астрономию так же, как геометрию, с применением общих положений, а то, что на небе, оставим в стороне, раз мы хотим действительно освоить астрономию и использовать еще неиспользованное, разумное по своей природе начало нашей души" (курсив мой.
– П.Г.).
Это заявление Платона, в сущности, шло вразрез с практикой астрономической науки его времени, которая, естественно, не могла оставлять в стороне "то, что на небе"; но такой крайний антиэмпиризм не был простой случайностью: он логически вытекал из платоновского убеждения в том, что точная наука должна иметь дело с идеализациями, а не с теми эмпирическими предметами, которые даны нам в чувственном восприятии. Платон поэтому не только не допускал возможности точного научного знания применительно к земным явлениям, что впоследствии пересмотрел Аристотель, но, как видим, даже изучение небесных светил он считал всего лишь подсобным средством для истинной астрономии.