История греческой философии в её связи с наукой
Шрифт:
Перейдем к двойке. Что будет с двойкой, если она соединится с интеллигибельной материей - пространством? Двойка - это "единое и иное", это начало различия, когда единое перестает быть абсолютно единым и вступает в контакт с иным. Строго говоря, когда единица становится пространственной, т.е. вступает в контакт "с положением", а значит, с "иным", чем она сама, она уже двойка. И действительно, со стороны того определения, которое она получает от этого контакта, от "положения" (пространственности), она есть движущееся; а движущаяся точка - это линия. (Правда, не будем забывать, что со стороны первого своего определения единицы - точка есть граница, т.е. нечто устойчивое, неподвижное, закрепляющее.)
Но можно провести рассуждение и иначе. Если взять двойку не со стороны "материи" (движущаяся точка), а со стороны ее числово-идеального "отца", то она
Займемся теперь тройкой. В сущности, тройка у Платона является первым числом: ведь единица и "неопределенная двоица" - это скорее "начала" чисел, чем сами числа. Тройка же представляет собой единство единицы и двойки, т.е. начала ограничивающего и безгранично-неопределенного. Двойка, выражающая начало "различия", соединившись с материей-пространством, предстает как линия, неограниченно продолжающаяся в обе стороны. У двойки, как мы знаем еще из разбора пифагорейской математики, нет "середины", которая "удержала" бы ее "концы", "скрепила" бы их друг с другом. В тройке эта середина налицо, а потому тройка - нечетное число - устойчива и довлеет себе. Но как в пространстве соединяется двойка-линия с единицей-точкой? Возьмем точку вне прямой и соединим ее отрезками с концами прямой; тем самым мы произведем операцию в пространстве, аналогичную соединению трех единиц или двойки и единицы. В результате мы получим новый геометрический объект - треугольник. (Построение правильного, т.е. равностороннего треугольника на данной ограниченной прямой, или операция нахождения точки, равноотстоящей от двух других точек ("концов" прямой) - первая теорема I книги "Начал" Евклида.)
В результате соединения точки с прямой (единицы с двойкой в пространстве) прямая больше уже не может неограниченно продолжаться в обе стороны: третья точка "держит" оба ее конца. Как "тройка" - первое настоящее число, так и треугольник - первая пространственная фигура: точка и линия - это элементы, "начала", из которых строятся геометрические фигуры.
При этом "переведении" чисел в пространство каждое новое число представляет пространственный элемент нового измерения: единица не имеет измерений ("не имеет частей"); двойка имеет одно измерение - "длину без ширины" ("Начала" Евклида, кн. I, определение 2); тройка имеет два измерения - длину и ширину. Треугольник, таким образом, есть "первая" (не во временн(м, а в логическом смысле) плоскость, ибо тройка означает два измерения.
Наконец, четверка, соединившись с "материей" пространства, даст в результате три измерения. Если возьмем точку, лежащую вне нашего треугольника, и соединим ее с вершинами последнего, то получим уже трехмерное тело - пирамиду (тетраэдр), которая будет парадигмой, образцом объемных образований, "первым телом" опять-таки в логическом плане. Подобно тому как идеи у Платона являются идеальными образцами чувственных вещей, точно так же треугольник и пирамида являются у него промежуточными - не идеальными, но и не чувственно-телесными - образцами всех двухмерных (плоскостных) и трехмерных (объемных) объектов. И если мы будем называть это "промежуточное" начало, эту "интеллигибельную материю" пространством, то, стало быть, треугольник - это "первая", исходная, элементарная "клеточка" тела.
Но это не значит, что плоскость "складывается" из треугольников наподобие того, как одеяло сшивается из лоскутов. Отношение "образца" к тому, образцом чего оно является, иное, чем отношение атома к составленным из атомов телам. Как писал неоплатоник эпохи Возрождения Марсилио Фичино, "при построении правильных тел из элементарных треугольников имеется в виду не столько слагать их, сколько сравнивать друг с другом (comparanda haec inter se potius quam componenda)".
Итак,
Поскольку, однако, точка, линия, треугольник, пирамида и т.д.
– это воплощенные идеальные образования, постольку они неделимы. Отсюда учение платоников не только о неделимых точках, но и о неделимых линиях, неделимых треугольниках или, что то же самое, неделимых поверхностях. "Разделить" точку, "первую" линию, "первый" треугольник - это все равно, что "разделить" понятие тождества, различия или "единства различных", ибо именно таковы "понятия" точки, линии и плоскости. О "делении" применительно к этим первым элементам можно, согласно платоникам и пифагорейцам, говорить только в одном смысле, а именно в смысле уменьшения числа измерений. Так, например, в результате "разделения" треугольника, т.е. плоскости, получим не плоскости, меньшие по своей величине, а линию; в результате деления линии - не все меньшие линейные отрезки, а точку. В этом состоит различие между платоновским и демокритовским пониманием неделимого. Согласно Демокриту, при делении тела мы получаем в конце концов далее неделимые элементы того же измерения, что и само тело.
И в самом деле, у Платона числовые (т.е. идеально-логические) элементы треугольника (тройки) - это двойка и единица. Как можно "поделить" тройку? Только разложив ее на эти "элементы" - в результате вместо треугольника будет линия (двойка). То же и с линией. Но разве мы не можем разделить линию не как двойку, а как "движущуюся" в воображении точку, ибо ведь линия порождается этой движущейся точкой? На этот вопрос платоники, как кажется, должны ответить так: эту проводимую в воображении линию мы можем разделить, но мы разделим при этом не линию, а только некое чувственно воспринимаемое протяженное тело, которое будет "телом линии" лишь при одном условии: если оно - двойка. А двойку мы не можем делить иначе чем на единицы, т.е. применительно к геометрии, точки.
Математические неделимые: споры вокруг них в античности
Однако такого рода объекты-кентавры - линии, треугольники и т.д.
– могли вызывать затруднения в силу смешения двух аспектов: числового (идеального, логического) и пространственного - воззрительного, наглядного. Естественно, что при этом "неделимые линии" представлялись как "мельчайшие": ведь они первые, из них - все остальное, и любой отрезок прямой тогда оказывается состоящим из этих неделимых (атомарных) линий, аналогично тому, как у Демокрита тело - из мельчайших частиц того же измерения.
Именно на этом смешении двух способов рассмотрения - числового и пространственного - основан трактат "О неделимых линиях", который приписывался Аристотелю, но принадлежит, возможно, Теофрасту. В нем дается критика учения платоников о неделимых линиях. Среди платоников это учение разрабатывал прежде всего Ксенократ, хотя, как сообщает Аристотель, оно уже было и у Платона.
Но автор трактата о неделимых линиях исходит из представления о том, что последние представляют собой "мельчайшие" в пространственном (а не логическом) смысле линии-атомы, из которых слагается (вспомним предостережение Фичино) "большая" линия. А при таком понимании неделимых линий действительно возникает целый ряд противоречий и неувязок, которые автор и перечисляет.