История греческой философии в её связи с наукой
Шрифт:
Платон не пользуется терминами, которые употребляет здесь Прокл: "интеллигибельная материя" и "фантазия". Но то, что названо этими терминами, мы у Платона уже встречали: интеллигибельная материя - это ведь гибрид, соединение, казалось бы, несоединимого - интеллигибельного и чувственного, то самое соединение, которое Платон считал характерным для пространства. А способность, которой постигается эта "интеллигибельная материя", носит у Прокла название "фантазии".
Что же касается аргументов Спевсиппа, то их Прокл считает относящимися к вопросу о невозможности конструирования геометрических объектов механическим путем; и в этом пункте позиция Спевсиппа, судя по всему, смыкается с платоновской. Но теперь понятны нам и приведенные Проклом слова Спевсиппа о том,
Значит, постулаты Евклида представляют собой способы оперирования с этой "интеллигибельной материей" - пространством? Мы не знаем, как интерпретировал постулаты сам Евклид, но, по-видимому, Платон мог бы их истолковать так же.
Приведем еще одно разъяснение Прокла. "Возможность провести прямую из любой точки в любую точку вытекает из того, что линия есть течение точки, и прямая - равнонаправленное (gleichgerichtete) и не отклоняющееся течение. Представим, следовательно, себе, что точка совершает равнонаправленное и кратчайшее движение; тогда мы достигнем другой точки, и первое требование выполнено без всякого сложного мыслительного процесса с нашей стороны".
Вот, стало быть, что означает, согласно Проклу, первый постулат Евклида: это простейший акт представления того, как движется точка. Простейший, не требующий от нас особых усилий. Но если не нужно особых усилий, чтобы представить себе (а представление, образ относятся к сфере становления сравни у Спевсиппа), как движется точка, то нужно сделать большое усилие, чтобы понять, где же, в какой стихии эта точка движется и что такое она сама. Может быть, это шарик, катящийся по столу? Или кусок мела, который движется по доске? Но они - не точки, а чувственные вещи. Может быть, точка - это идея? Но идея не может двигаться, она не причастна миру становления, в котором только и может иметь место движение. Что же такое точка и где то место, в каком она движется?
Прокл отвечает на этот вопрос так: "Но если бы у кого-нибудь возникли затруднения относительно того, как мы вносим движение в неподвижный геометрический мир и как мы движем то, что не имеет частей (а именно точку) - ибо это ведь совершенно немыслимо, то мы попросим его не слишком огорчаться... Мы должны представлять движение не телесно, а в воображении (kЕnhsiV fantastik ); и мы не можем признать, что не имеющее частей (точка) подвержено телесному движению, скорее оно подлежит движениям фантазии. Ибо неделимый ум (noаV) движется, хотя и не способом перемещения; также и фантазия, соответственно своему неделимому бытию, имеет свое собственное движение".
Таким образом, движение геометрической точки совершается не в умопостигаемом мире, но и не в мире телесном; оно совершается в воображаемом мире: точка движется в фантазии. Такое название у Прокла получила способность, которая, согласно Платону, подобна сну. И в прямом соответствии с утверждением Платона, что чертежи на песке представляют собой только чувственные подобия геометрических фигур, Прокл далее говорит о том, что телесное движение карандаша по бумаге есть лишь телесный аналог, телесный образ движения бестелесной точки по бестелесной "бумаге" пространству, т.е. движение, совершаемое в фантазии.
Промежуточная способность теперь названа "фантазией", а промежуточное бытие - "интеллигибельной материей". Нам думается, что хотя термины эти принадлежат Проклу, но онтологический статус объектов геометрии определен им вполне в духе философии математики Платона. Если позиция Спевсиппа в некоторых пунктах и не вполне совпадала с платоновской, то в рассматриваемом вопросе она, как нам кажется, весьма близка к платоновской.
Теперь к вопросу о линейке и циркуле: видимо, Платон признавал эти инструменты подходящими только для того, чтобы представить нашему "телесному зрению" те фигуры, которые мы реально "порождаем" в фантазии; чертежи на песке
Исходя из сказанного, можно сделать следующий важный вывод: древнегреческая наука принципиально не могла последовательно провести мысль о том, что геометрический объект - точка - движется в материальном мире. Даже у Архимеда и Герона еще не было той формы связи между механикой и геометрией, какая возникла только в эпоху Возрождения и благодаря которой стало возможным совсем новое истолкование математической программы античности.
Иерархия математических наук
Мы выяснили, в чем Платон видел различие между числами и геометрическими фигурами. Понятно, что различие в онтологическом статусе арифметических и геометрических объектов должно обусловливать, согласно Платону, также и познавательную значимость этих двух математических наук. Арифметика поэтому является первой в ряду наук и наиболее логически обоснованной. Что касается геометрии, то она не имеет строго логического обоснования, ибо ее элементы нуждаются для своего обоснования также в "интеллигибельной материи" пространстве. Для геометрии наглядность ("созерцание") необходима, для арифметики - нет. Тем не менее все математические науки имеют в глазах Платона высокий ценностный статус: все они в той или иной мере причастны к постижению высшего бытия, а потому и должны почитаться как средства к высшему познанию.
Большинство историков науки согласны между собой в том, что греческая математика отличается от средневековой и особенно от математики нового времени. К характерным ее чертам принадлежит, в частности, специфическое отношение к числу, носящее ярко выраженный аксиологический характер. Такое отношение к числу особенно характерно для математиков и философов, принадлежащих к пифагорейской школе и к платоновской Академии. Анализ платоновских произведений показывает, как складывалось и чем мотивировалось ценностное отношение к математике.
Само происхождение знаний о числе представляется Платону достойным всякого почитания. "Давайте рассмотрим, - говорит он, - как мы выучились считать. Скажите: откуда у нас появилось понятие единицы, двойки? Почему только мы одни из всех живых существ по своей природе можем иметь такое понятие?.. Нам впервые привил Бог понимание того, что нам показывают, а затем он показал нам число и показывает до сих пор. Происходит беспрестанная смена многих ночей и дней. Небо совершает это беспрестанно, научая людей понятию о единице и двойке, так что, наконец, и самый неспособный человек оказывается в состоянии усвоить счет. Созерцая это, каждый из нас может получить понятие о числах "три", "четыре" и о множественности".
Счет, таким образом, есть нечто священное уже потому, что ему нас научило Небо. То, что математика на Востоке с самых древних времен связана была с астрономией, в этом нет сомнения, и это, собственно, Платон и имеет в виду. Однако математика, как и астрономия, была связана и с практическими нуждами, но эту ее функцию Платон, как мы уже видели, считает производной и второстепенной.
Дарованная нам Небом наука о числе, согласно Платону, не может содержать в себе ничего дурного, отрицательного. Вот отрывок, где дается ценностная характеристика числа: "Что число не вызывает ничего дурного, это легко распознать, как это вскоре и будет сделано. Ведь чуть ли не любое нечеткое, беспорядочное, безобразное, неритмичное и нескладное движение и вообще все, что причастно чему-нибудь дурному, лишено какого бы то ни было числа. Именно так должен мыслить об этом тот, кто собирается блаженно окончить свои дни. Точно так же никто, не познав [числа], никогда не сможет обрести истинного мнения о справедливом, прекрасном, благом и других подобных вещах и расчислить это для самого себя и для того, чтобы убедить другого" (курсив мой.
– П.Г.).