История лазера
Шрифт:
Бломберген математически проанализировал разные процессы, которые происходят, и пришел к заключению, что инверсную населенность можно получить, например, между уровнями 3 и 2, если время, требуемое атомам, чтобы вернуться обратно в основное состояние (так называемое время релаксации), удовлетворяет определенным условиям.
В этом месте мы должны сказать, что идея использовать трехуровневую систему, пришла также Басову и Прохорову. В 1955 г. они опубликовали предложение, в котором рассматривались молекулы газа, с тремя уровнями. Они показали, что возможно получить инверсную населенность, используя подходящие поля излучения. В отличие от Бломбергена, система, предлагаемая двумя российскими исследователями, не допускала перестройки
Возвратимся в США. В Bell Labs группа, в которой работал Гордон, поступивший в исследовательский центр после выполнения диссертации под руководством Таунса и Г. Феером, сумела получить мазерный эффект в образце кремния с примесями в согласии со схемой, предложенной Таунсом и его французскими коллегами. Немного спустя, Рудольф Компфнер (1909—1977), руководитель исследований по электронике, изобретатель лампы бегущей волны, привлек Г. Сковила, сотрудника технического отдела, работающего над разработкой твердотельных устройств. Эти два человека познакомились в Оксфордском университете, где работал Компфнер, а Сковил занимался изучением, как сделать твердотельный мазер, работающий в непрерывном режиме. 7 августа 1956 г. Сковил представил меморандум с предложением использовать кристалл этилсульфата гадолиния, свойства которого он детально изучил во время работы над своей диссертацией. Предполагалось использовать парамагнитные уровни в подходе, идентичном предложению Бломбергена. Сковил подготовил статью для посылки в Phisical Review.
Сообщения о работах Бломбергена доходили до научного центра Bell Labs, а Бломберген узнал, что что-то происходит в этих лабораториях. Бломберген хотел запатентовать свой мазер и стал беспокоиться, что он выдал слишком много информации коллегам. С другой стороны, в Bell Labs боялись, что может возникнуть неприятная ситуация с приоритетами оригинальных идей и будущими судебными процессами о патенте. Итак, Бломбергена пригласили представить свои результаты в Bell Labs, и 7 сентября 1956 г. он провел семинар в Нью Джерси (отделения Bell Labs расположены в двух местах). Сковил, не знавший о работе Бломбергена, понял на семинаре, по его собственным словам, что «Бломберген имел ту же идею и пришел к ней раньше меня. Так что я не послал мою работу в печать».
Bell Labs приняла соглашение об использовании патента Бломбергена, тем самым, оставляя обеим группам возможность полюбовно договориться, как реализовать экспериментально первый мазер этого типа.
Между тем Бломберген опубликовал свое предложение в Physical Review, в статье, полученной 6 июля 1956 г. и опубликованной в номере от 15 октября того же года. В ней он дополнительно рассматривал некоторые возможные материалы, что могло помочь создать мазер.
К сожалению, он и его группа в Гарварде интересовались устройством для астрономических целей, работающим на частоте линии межзвездного водорода 1420 МГц. Поэтому они выбирали материал, который мог бы работать на этой частоте, и упустили возможность первой успешной работы трехуровневого мазера. На следующий год, после публикации теоретической работы Бломбергена, первый трехуровневый мазер был создан (1957г.) в Bell Labs Сковилом, Феером и Зайделем, которые использовали ионы гадолиния в кристалле этилсульфата лантана. Вскоре после этого (1958 г.) А. Маквортер и Дж. Мейер из MIT использовали ионы хрома в цианидах кобальта и натрия, для создания первого усилителя. Бломберген и его сотрудники также старались сделать свой мазер, но оказались третьими в 1958 г.
При создании своего мазера, Сковил и его коллеги искусно использовали принцип его работы. Количество усиливающих ионов гадолиния зависит от того, какая инверсная населенность получается между мазерными уровнями. В случае гадолиния ими были уровни 2 и 1. Разность населенностей между этими двумя уровнями зависит,
В то время как первоначальный аммиачный мазер был принципиально использован в качестве стандарта частоты, из-за стабильности частоты его излучения, или еще в качестве очень чувствительного детектора, твердотельный мазер, будучи перестраиваемый по частоте, мог бы быть использован для связи и для радаров. Его можно было непрерывно перестраивать в пределах допустимой полосы частот, оставаясь с принципиально малыми шумовыми характеристиками, присущими мазеру. Перестройку можно было получить, изменяя напряженность магнитного поля.
Немного времени спустя Ч. Кикучи и его коллеги показали, что рубин является хорошим материалом для мазера. В 1955 г. инженер Вестон Вивиан начал специальные исследования в Willow Run Lab. в Мичиганском университете, поддержанные военными, с целью разработать пассивную систему с очень чувствительным приемником, с помощью которой можно было бы регистрировать микроволны, естественно испускаемые объектами (вспомним закон черного тела, гл. 3). Вивиан рассчитал, что требуется исключительная чувствительность микроволнового приемника. Кикучи вначале занимался изучением поглощений микроволн в кристаллах. И его попросили попробовать построить хороший мазер, пригодный для этих целей. После рассмотрения трицелата хрома, который технологи с трудом вырастили, Кикучи решил использовать розовый рубин.
Рубин является кристаллом окиси алюминия (Аl 2O 3), в котором в качестве примеси имеются атомы хрома. Эти атомы замещают некоторые из атомов алюминия и теряют три своих валентных электрона, превращаясь, тем самым, в ион с тремя зарядами. Эти ионы, как мы увидим позднее, ответственны за оптические свойства, и именно они придают замечательный красный цвет рубину. Разумеется, рубины, используемые в мазере, получаются синтетически. Интенсивность окраски зависит от концентрации ионов хрома.
В январе 1957 г. Кикучи получил образец розового рубина и приступил к созданию мазера. Важным параметром конструкции мазера является угол, под которым магнитное поле направлено к оси кристалла. В то время предпочтительным углом был 15°. Но при этом угле, чтобы рассчитать положение требовался компьютер, который в те дни был недоступен. Кикучи выбрал угол 54°44' (рис. 44). При этом угле вычисления упрощаются так, что можно получить аналитические выражения. Они показывают, что можно построить мазер на длину волны 3,2 см, которая была хорошо знакома техникам, имеющими дело с радарами.
Однако работа продвигалась медленно, и только 20 декабря 1957 г. мазер заработал. После этого Маквортер и Мейер из MIT, весной, смогли сделать мазер, используя калий-кобальт цианид с добавкой хрома. Таунс со своими сотрудниками запустили мазер на 3 см, а Бломберген с сотрудниками с помощью этого же материала сделали свой собственный мазер на 21 см.
Калий-кобальтовый цианид — очень ядовитый материал. В 1958 г. Бломберген и Таунс с женами обедали в ресторане Нью-Йорка. Миссис Таунс похвасталась перед мисс Бломберген золотой цепочкой с кулоном из великолепного рубина. Она сказала, что ее муж сделал этот подарок в ознаменования мазера. Той же ночью, в отеле миссис Бломберген спросила мужа: «Когда ты собираешься сделать мне подарок в ознаменование твоего мазера?» На это Бломберген ответил: «Видишь ли, дорогая, мой мазер работает на цианиде». Таким образом, он избавился от необходимости покупать дорогой подарок!