История лазера
Шрифт:
Атомные часы
Было установлено, что наиболее интересным применением мазеров на атомных пучках является создание атомных часов. Очень точные часы можно использовать, чтобы установить, являются ли астрономические «константы» действительно постоянными или они изменяются со временем. Также можно проверить справедливость общей теории относительности. Кроме своей научной значимости, атомные часы имеют важное военное и экономическое значение. В 1950-х — 1960-х гг. прецизионные стандарты частоты потребовались для навигационных систем. Высокостабильные стандарты частоты, не подверженные вибрациям, стали частью систем управляемых снарядов. Естественно,
Мазер является оптимальным стандартом частоты, который обеспечивает лучшую точность по сравнению с уже существовавшими атомными часами. Для этой цели водородный мазер стал особенно полезен. Он был создан Рамси и его сотрудниками в 1961 г. и был первым атомным мазером. Его очень точная испускаемая частота была использована для стабилизации микроволнового генератора в системе двух полей Рамси.
Водородный мазер (работает на частоте 1420 МГц) был использован в 1976 г. для проверки положений общей теории относительности. Его также использовали для управления полетом «Вояджера-2» в его исторической миссии к Нептуну.
Генерация от ускоренных электронов
В начале 1951 г. физик Ганс Мотц (1909—1987) предложил новый способ получения излучения на миллиметровых и субмиллиметровых длинах волн, который не включал явного упоминания процессов инверсии населенности или вынужденного излучения, даже если эти концепции неявно использовались в принципе работы. Позднее это устройство превратилось в один из многих путей получения лазерного излучения, получившего название лазер на свободных электронах. Сегодня это один из немногих лазеров, генерирующих очень короткие длины волн.
Мотц сделал свое предложение в 1951 г., когда он был в Стенфордском Университете (Калифорния, США). Его идея заключалась в том, чтобы пропустить пучок электронов через набор магнитов с переменной полярностью.
Под действием магнитного поля электрон движется уже не по прямой, а по дуге окружности. Когда электрон попадает в поле противоположного знака, дуга изгибается в противоположном направлении, и траектория становится последовательностью полуокружностей, как показано на рис. 48. Электроны, движущиеся по таким искривленным траекториям, должны испускать излучение согласно законам электромагнетизма. При определенных условиях излучение от отдельных сегментов может стать непрерывным цугом волн. Поскольку электроны в пучке движутся с очень высокой скоростью, необходимо учитывать теорию относительности. Она показывает, что благодаря ограничениям, следующим из этой теории, длины волн испускаемого излучения связаны с радиусами полуокружностей, но много короче, попадая в область миллиметров или субмиллиметров, а при особых конструкциях даже в видимый спектр и еще короче длин волн. Интересной особенностью такого устройства является то, что при изменении энергии электронов или при изменении расстояния между полюсами магнитов, можно изменять длину волны, т.е. получать источник с непрерывной перестройкой длины волны.
Мотц дал экспериментальную демонстрацию в 1953 г. в Стенфорде, используя линейный ускоритель, и получил излучение мощностью в несколько ватт на длине волны 1,9 мм.
Рис. 48. Мазер или лазер на свободных электронах. Пучок электронов проходит через ряд магнитов с противоположной ориентацией поля (N и S обозначают северный и южный полюса). В результате электрон совершает движение по полуокружностям в плоскости, ортогональной полям, и излучает электромагнитные волны (на рисунке не показаны)
Космические мазеры
Здесь читатель может подумать, что мазер это человеческое изобретение.
В 1965 г. радиоастрономическая группа, руководимая профессором Г. Вивером из Беркли (Калифорния, США), наблюдала радиоизлучение около 1670 МГц, приходящее от молекул ОН, расположенных вблизи некоторых звезд. Это излучение состоит на самом деле из четырех известных переходов ОН на 1612, 1665, 1667 и 1720 МГц. Если излучение на этих линиях происходит на спонтанных переходах, они должны иметь интенсивности в отношениях 1:5:9:1, как следует из известных вероятностей для этих четырех переходов. Однако наблюдаемые отношения интенсивностей были совершенно другими и изменялись довольно быстро во времени (пределах временной шкалы месяцев). Распределение испускаемых частот этих линий было не гладким, но иногда содержало очень узкие компоненты. Эти ширины линий были такими, что температуры, соответствующие им, должны были бы быть менее 50 К. В то же время, интенсивность была столь высока, что температура источника должна была бы быть 10 12К. Было очевидно, что испускание происходит либо от крайне узких точечных источников, либо получается в виде хорошо направленных пучков.
Единственным разумным объяснением этих результатов было, что такое излучение возникает из-за спонтанного излучения в некоторой части облака, содержащего ОН, а затем сильно и направленно усиливается мазерным усилителем, проходя остальные части облака. Такое усиление могло бы объяснить аномальное отношение интенсивностей, высокую интенсивность и направленность излучения.
Также представлялось разумным, что свойства мазерного усиления могут быстро изменяться во времени, причем за такие времена, что не могут измениться как общее количество ОН, так и связанное с ними спонтанное излучение. Механизм накачки, ответственный за инверсную населенность, теперь понятен. Молекулы возбуждаются инфракрасным излучением, испускаемым космической пылью, и при соответствующих условиях создается инверсная населенность.
В 1968 г. были найдены другие субстанции, излучающие подобным образом, и сегодня в нашей галактике открыто более тысячи мазеров, в которых задействованы более чем 36 молекул и почти 200 переходов. Среди этих молекул, кроме ОН, — вода, метанол, аммиак и SiO.
Сегодня полагают, что эти космические мазеры существуют в областях, где формируются звезды или где звезды близки к концу своего жизненного цикла. Оба типа звезд обычно сопровождаются сильными потоками вещества в окружающее пространство. Типичные струи имеют скорости около 30 км/с, а наиболее энергичные достигают 300 км/с. Вещество, испущенное в пространство, быстро конденсируется и может быть накачено инфракрасным излучением, испускаемым самой звездой.
Механизм излучения различных молекул может быть в некоторых случаях обусловлен накачкой струй инфракрасным излучением, как утверждалось, но в других случаях это может быть возбуждением за счет столкновений. Например, в случае SiO были получены результаты, подтверждающие эту идею. Большинство SiO мазеров находятся во внешней атмосфере звезд-гигантов и супергигантов, сильно эволюционирующих звезд. Звезды этого типа теряют большую часть своей атмосферы в виде ветра, который обогащает межзвездное вещество галактики. Во время этого сильного ветра молекулы SiO могут быть возбуждены за счет столкновений с другими молекулами, которые обладают высокими скоростями, будучи веществом ветра.