История лазера
Шрифт:
В середине 1967 г. Б. Соффер и Б. МакФаллан заменили одно из зеркал резонатора отражающей дифракционной решеткой и получили лазер, плавно перестраиваемый по длинам волн в области более 400 А простым поворотом решетки.
Лазеры на красителях в настоящее время позволяют получать лазерное излучение на любой длине волны, от ближнего ИК-диапазона до ультрафиолета. Благодаря тому, что лазеры на красителях имеют чрезвычайно широкие полосы усиления, они позволяют осуществлять режим генерации импульсов длительностью менее пикосекунды (10 —12с).
Лазерные диоды
Полупроводниковые или диодные лазеры очень важны для многих применений. В них используются не уровни, а энергетические состояния нелокализованных электронов. В твердых телах энергетические уровни электронов группируются в зоны. При температуре абсолютного нуля в полупроводниках, все имеющиеся уровни заполняют одну зону (валентная
Электроны и дырки, способные поддерживать ток, называются носителями. Если по какой-либо причине в зоне проводимости оказывается больше электронов, чем следует по статистике Максвелла-Больцмана, избыток электронов падает на вакантные энергетические уровни валентной зоны и таким образом возвращается в валентную зону и там исчезает дырка. То же самое происходит, если, наоборот, больше дырок присутствует в валентной зоне, чем допускается данной температурой. Этот процесс называется рекомбинацией двух носителей. Он происходит, давая энергию, соответствующую величине интервала между двумя зонами, которая проявляется либо в виде механических колебаний решетки, либо в виде испускания фотона. В последнем случае переход называется излучательным, а энергия фотона соответствует разности энергий уровней в валентной зоне и в зоне проводимости, т.е., грубо говоря, равной энергии запрещенной зоны.
Некоторые полупроводники не вполне чистые. Примеси образуют энергетические уровни электронов внутри зон. Если эти дополнительные уровни находятся вблизи дна зоны проводимости, термическое возбуждение заставляет их электроны перепрыгнуть в зону проводимости, где они способны поддерживать электрический ток. Уровни примеси остаются пустыми и, поскольку они фиксированы в материале, не способны поддерживать ток. В этом случае единственными носителями тока являются электроны в зоне проводимости, и полупроводник называется допированным n-типом («n» напоминает, что проводимость обеспечивается отрицательными зарядами). Наоборот, если уровни примеси располагаются вблизи верха валентной зоны, термическое возбуждение заставляет электроны из валентной зоны перепрыгнуть на эти примесные уровни, образуя тем самым дырки, которые способны поддерживать ток. Тогда полупроводник называется p-типом («p» — для положительного заряда). Возможно так допировать полупроводник, что получаются области как p-типа, так и n-типа с узкой промежуточной областью между ними. Этот промежуток между различными областями называется p-n-переходом. Если заставить ток протекать через этот переход, делая n область отрицательной и p область положительной, электроны инжектируются в этот переход. На основе этого свойства были изобретены в конце 1940-х гг. транзисторы, вызвавшие революцию в мире электроники.
Хотя полупроводники были известны давно, их физика была полностью понята только после изобретения транзистора в 1948 г. Можно тем самым понять, что были некоторые сомнения в возможности их использования для лазера. Во всяком случае полупроводники были первыми, рассмотренными как возможная среда для получения излучения путем стимулированного испускания. В то время были выдвинуты различные предложения. В 1954 г. Джон фон Нейман обсуждал с Джоном Бардиным (один из изобретателей транзистора) возможность использования полупроводников. Тремя годами позднее, в 1957 г., произошел подлинный взрыв. В Японии 22 апреля 1957 г. был выдан патент Ватанабе и Нишизава, в котором рассматривалось рекомбинационное излучение, получающееся при инжекции свободных носителей в полупроводнике. Позднее он был опубликован 20 сентября 1960 г. Патент назывался «полупроводниковый мазер», и, как пример, рассматривалось рекомбинационное свечение в теллуре на длине волны около 4 мкм, т.е. в ближнем ИК-диапазоне. Авторы наивно рассматривали полупроводник, помещенный в резонаторе, типичном для микроволновой области. Но концепция использовать инжекцию носителей и их рекомбинационное излучение была озвучена. В Линкольновской лаборатории MIT физик Бенжамен Лэкс провел в 1957 г. семинар с участием Пьера Эгрэна (1924—2002) из Парижа, и начались исследования переходов в группе энергетических уровней, которые возникают, когда полупроводник помещается в сильное магнитное поле (подобные тем,
В бывшем Советском Союзе группа ученых Института им. П.Н. Лебедева (ФИАН) АН СССР, возглавляемая Н.Г. Басовым, в составе Б.М. Вула и Ю.М. Попова, начала в 1957 г. рассматривать возможность использования полупроводников для продвижения излучения мазера в оптический диапазон. Басов начал рассмотрение этой проблемы вместе с Поповым, который тогда работал в лаборатории люминесценции. Оба исследователя познакомились, когда были студентами в МИФИ. Физика полупроводников изучалась в ФИАНе в лаборатории полупроводников, которой руководил Бул. Поэтому он, естественно, принимал активное участие. В результате сотрудничества этих трех ученых появилось предложение лазерной системы с использованием электрического разряда. Оно было опубликовано в июне 1958 г. и обсуждалось Басовым на Западе на Первой конференции по квантовой электронике, организованной Таунсом в США. Этой работы не было в программе, и она была представлена на обеде (полупроводниковый лазер, работающий на этом принципе, был создан много позже, в 1968 г., в группе Басова). Позднее, в 1960-61 гг., эта группа предложила еще три метода возбуждения: электронный пучок, оптическая накачка и инжекция электронов через p-n-переход. Авторами этих предложений были Н.Г. Басов, Ю.М. Попов и О.Н. Крохин. Выполнялись также экспериментальные исследования. В 1959 г, в ФИАНе под руководством Басова была начата программа «Фотон», которая была первой научной программой в СССР по разработке лазеров.
Возможность использования полупроводников рассматривалась в США и обсуждалась в 1959 г. в MIT Кромером и Цайгером. В 1960 г. Бойль и Томас из Bell Labs получили патент на использование полупроводников для создания лазера.
Тем временем, в 1961 г., двумя французскими исследователями М. Бернардом и Г. Дурафургом из Национального исследовательского центра телекоммуникаций (CNET) был получен важный теоретический результат. Они представили полное и исчерпывающее обсуждение, из которого следовала возможность вынужденного излучения в полупроводниках благодаря переходам между зоной проводимости и валентной зоной. Были получены фундаментальные соотношения, из которых следовала возможность получить лазерный эффект. Они также рассмотрели некоторые материалы, в которых можно ожидать выполнение нужных условий, и предложили среди других материалов полупроводники GaAs (арсенид галлия) и GaSb (антимонид галлия). После публикации этой работы многие группы начали активные исследования. В январе 1962 г. российский ученый Д.Н. Наследов и его коллеги из Физико-технического института АН СССР (г. Ленинград) сообщили, что ширина линии излучения, испускаемого GaAs-диодами, демонстрирует некоторое уменьшение ширины при увеличении тока. Они предположили, что это могло указывать на вынужденное излучение. В США несколько групп из IBM, RCA, Линкольновской лаборатории MIT и General Electric (GE) начали соревновательную гонку, которая коротко описывается здесь.
В Ватсоновском исследовательском центре IBM P. Ландауер сформировал в 1961 г. небольшую группу для изучения проблемы систематическим путем. В. Думке из IBM показал, что простые (элементарные) полупроводники, такие как кремний и германий, которые широко используются в электронике, не пригодны из-за их структуры зон, и предложил использовать более сложные в структурном отношении полупроводники (полупроводниковые соединения), такие как арсенид галлия. У них минимум энергии зоны проводимости совпадает с максимумом валентной зоны (прямозонные полупроводники). В IBM были хорошие условия для изучения, поскольку уже началась программа для применений арсенида галлия в электронике.
Изучением полупроводниковых соединений, особенно арсенидом галлия, занимались также в General Telephone and Electronics Laboratories (GT&E). Здесь работала группа С. Мэйбурга. В марте 1962 г. он представил на заседании Американского Физического Общества работу по электролюминесценции GaAs диодов при 77 К, т.е. излучение этих диодов, охлажденных до температуры жидкого азота, при пропускании электрического тока. Было показано, что при определенных условиях почти каждый заряд, инжектированный через p-n-переход, дает фотон. Это был результат, аналогичный тому, что получил Мейман для рубина (высокая квантовая эффективность) и указывал, что p-n-переходы являются идеальной системой, для получения лазерного эффекта.
Ж. Панков из RCA провел 1956—1957 гг. в Париже, работая с Эгрэном. Возвратившись из Франции, он начал исследования, но без финансовой поддержки, поскольку начальство не рассматривало полупроводниковые лазеры выгодным объектом. В январе 1962 г. на конференции Американского Физического Общества Панков объявил о наблюдении рекомбинационного излучения из переходов арсенида галлия. Мэйбург почувствовал, что его могут опередить, и удвоил усилия.
В IBM, после семинара с Мэйбургом, теоретик Г. Лашер стал изучать вопрос, как сделать резонатор для полупроводникового лазера, а в то же время в соседней лаборатории в Йорктаун Хейтс М. Думке стал размышлять, как сделать лазер на арсениде галлия.