Чтение онлайн

на главную - закладки

Жанры

Шрифт:

В июле 1962 г. результаты Мэйбурга обсуждались на Конференции по исследованиям твердотельных устройств в университете Нью-Гемпшира и Р. Кейс и Т. Квист из MIT сообщили, что они создали диоды арсенида галлия с люминесцентной эффективностью, которую они оценивают в 85%. Панков в мае представил подобные же результаты на другой конференции. В MIT люминесценция, излучаемая диодом, использовалась для передачи телевизионного канала, о чем было сообщено в New York Times.

На этом этапе четыре группы пустились в гонку. Р. Холл из GE принимал участие в конференции в Нью-Гемпшире и был поражен представленными результатами. На него сильное впечатление произвела высокая эффективность излучения p-n-переходов арсенида галлия, и, возвращаясь, он еще в поезде стал делать расчеты и размышлять, как получить резонатор Фабри—Перо. Идея была: взять p-n-переход, обрезать и отполировать его грани. Холл был астрономом-любителем и в школе сам построил телескоп, он знал, как можно

отполировать оптические компоненты. В настоящее время резонаторы полупроводниковых лазеров получают скалыванием кристалла в нужном направлении, но в то время он не знал о такой методике. После некоторых обсуждений он получил разрешение начальства начать работу над проектом. Принципиальной трудностью было изготовление перехода GaAs, который должен был удовлетворять определенным критериям, а именно, сильно допирован. Вторая трудность была вырезать и отполировать грани так, чтобы они были параллельными друг другу. Затем следовало пропустить очень большой ток через переход, чтобы инжектировать достаточное число электронов. Ток должен был быть в виде импульса с короткой длительностью, чтобы не расплавить образец. Чтобы предотвратить чрезмерный рост температуры, следовало использовать охлаждение жидким азотом (77 К).

Хотя Холл был последним, включившимся в гонку, он оказался первым, правда на короткое время, и получил в сентябре 1962 г. первый лазерный диод. Бернард (из Франции) несколько раз посещал лабораторию Холла, обсуждая возможность полупроводниковых лазеров. Во время одного из визитов он появился как раз, когда группа Холла получила результат, но еще не оформила его для публикации. Поэтому достижение держалось в секрете. У Холла возникла проблема, как обсуждать возможность сделать лазер, не сообщая Бернарду, что он уже работает в соседней комнате.

Конференция в Нью-Гемпшире вдохновила также Н. Холоньяка из GE, эксперта по арсениду галлия. Когда первый диод заработал, почти одновременно несколько групп объявили о лазерном действии на p-n-переходах GaAs. Во всех случаях использовалось охлаждение до 77 К, а накачка производилась импульсами тока высокой интенсивности с короткой длительностью (несколько микросекунд). О лазере группы GE было объявлено в работе от 24 сентября 1962 г.; о втором лазере группы М. Натана из IBM Йорктаун Хейтс было объявлено 4 октября; а о третьем из Линкольновской лаборатории MIT — 23 октября. Холоньяк сообщил о своем лазере 17 октября. Все эти лазеры были сделаны на переходе арсенида галлия, охлаждались жидким азотом, и накачивались интенсивными импульсами тока длительностью несколько микросекунд.

Устройство Холла (рис. 60) представляло куб со стороной 0.4 мм, с переходом, расположенным в горизонтальной плоскости, в центре. Передняя и задняя грани были отполированы параллельно друг к другу и перпендикулярно к плоскости перехода, образуя резонатор Фабри—Перо (арсенид галлия обладает высоким показателем преломления, поэтому френелевское отражение на границе полупроводник—воздух дает достаточно высокий коэффициент отражения). При такой геометрии получается относительно длинный путь в области перехода, где инжектированные носители рекомбинируют и испускают свет, распространяющийся взад-вперед между отполированными гранями (зеркалами резонатора). Лазер работал при подаче импульсов тока длительностью 5—20 мкс, причем полюс тока подавался на p-допированную сторону перехода, а минус на n-допированную сторону. Диод помещался в жидкий азот. Когда ток достигал очень большого значения, 8500 А/см 2, возникала лазерная генерация, что проявлялось в резком увеличении испускаемого излучения и в сужении спектральной линии от 125 до 15 А°.

Рис. 60. Схема полупроводникового лазера на p-n-переходе простейшего типа. Лазерное излучение испускается в тонком активном слое между p и n зонами, и отражается взад и вперед параллельными гранями F 1, F 2, которые действуют как зеркала резонатора

Натан работал с несколько отличной системой, используя переход без резонатора. Порог, достигаемый при температуре жидкого азота, очевидно, был выше между 10 000 и 100 000 А/см 2. Т. Квист из MIT использовал структуру 1,4x0,6 мм2 с отполированными короткими гранями. При температуре жидкого азота порог был около 1000 А/см 2. Наконец, Холоньяк использовал переход соединения арсенида галлия с фосфидом. Используя этот материал, удалось получить генерацию при 6000—7000 А/см 2вместо 8400 А/см 2, когда использовался простой образец GaAs.

В России (СССР), вскоре после создания лазеров в США, В.С. Багаев, Н.Г. Басов, Б.М. Вул, Б.Д. Копыловский, О.Н. Крохин, Ю.М. Попов, А.П. Шотов и др. создали лазерный диод в ФИАНе. Этот результат обсуждался на 3-й Международной конференции по квантовой электронике в Париже, в 1963 г.

Первые лазеры делались из одного и того же материала с переходом между n и p частями. Они имели высокие пороги. В 1963 г. X. Кромер предложил использовать гетеропереходы, в которых полупроводник с относительно узкой запрещенной зоной располагается между двумя слоями полупроводника с более широкими запрещенными зонами (сэндвич-структура). В то же время аналогичное предложение сделали Ж.И. Алфёров и Р.Ф. Казаринов из Физико-технического института им. А.Ф. Иоффе (г. Ленинград). Российские ученые не опубликовали свое предложение. Прошло шесть лет, прежде чем в Bell Labs и в RCA были разработаны первые гетероструктурные лазеры. К тому времени Алфёров и его сотрудники разработали более сложные многослойные структуры, которые сегодня известны как лазеры с двойной гетероструктурой. Усилия Ж. Алфёрова и X. Кромера были отмечены Нобелевской премией по физике в 2000 г. «за разработку полупроводниковых гетероструктур, используемых в высокоскоростной электронике и в оптоэлектронике» вместе с Джеком Килби «за его вклад в изобретение интегральной схемы».

Ж.И. Алфёров родился в Витебске (Белоруссия) в 1930 г. Он окончил Электротехнический институт им. В. И. Ленина (Ленинград) в 1952 г. и в 1953 г. поступил в Физико-технический институт. С 1987 г. он директор этого института. Алфёров — академик РАН и депутат Государственной Думы.

Герберт Кромер родился в Веймаре (Германия) в 1928 г. и получил докторскую степень в университете Гёттингена в 1952 г. за диссертацию, посвященную только появившимся тогда новым транзисторам. В 1968 г. он стал работать в университете Колорадо, а с 1976 г. — в университете Калифорнии (Санта Барбара).

Разработка полупроводниковых лазеров тормозилась по нескольким причинам. Необходимо было разработать новую технологию для работы с полупроводниками, учитывая, что хорошо разработанная технология для кремния не годится. Проблемой также была необходимость работы с короткими импульсами большого тока при низких температурах. По этой причине КПД лазеров был низок. Значительный шаг вперед в решении этих проблем был сделан в 1969 г. путем введения гетероструктур, В гетероструктурном лазере простой p-n-переход заменяется многослойной структурой полупроводников разного состава (рис, 61). Активная область уменьшается по толщине, и ток, требуемый для лазерной генерации, существенно уменьшается, что соответственно уменьшает выделение тепла. Это приводит к тому, что уже не требуется охлаждение, и лазер может работать при комнатной температуре.

Рис. 61. Природный лазер в звезде MWC349. Лазерное излучение происходит в диске водорода, ближайшего к звезде, а мазерное излучение получается в более отдаленных областях. Излучение испускается в плоскости, показанной на рисунке, и достигает Земли, которая случайно оказалась лежащей в этой же плоскости

Два фактора сильно способствовали преобразованию полупроводниковых лазеров из лабораторных устройств, работающих при очень низких температурах в практичные оптоэлектронные устройства, способные работать непрерывно при комнатной температуре. Первое исключительное и счастливое сходство решеток, содержащих арсенид алюминия (AlAs) и арсенида галлия (GaAs), что позволяет изготавливать гетероструктуры из слоев разной композиции соединение типа A xGa 1—xAs. Второе многие важные применения, для которых полупроводниковые лазеры оказываются особенно пригодными из-за их особенностей: малые размеры (несколько кубических миллиметров), высокий КПД (обычно не менее 50%), накачка непосредственно электрическим током, долговечность по сравнению с другими типами лазеров.

Тот факт, что лазер непосредственно накачивается током, позволяет модулировать выходное излучение, простой модуляцией тока. Эта особенность идеальна для систем передачи информации.

Существует ли лазер в природе?

Ответ, по-видимому, да! Лазерное излучение с длиной волны около 10 мкм (типичная линия излучения двуокиси углерода, на которой работают мощные СO 2лазеры, находящие широкое применение, в частности для механической обработки материалов) было обнаружено в атмосферах Марса и Венеры в 1981 г. исследователями из Лаборатории экспериментальной физики Центра управляемых полетов им. Годдарда (НАСА). Это излучение уже наблюдалось в 1976 г. студентами Таунса, который стал заниматься проблемой астрофизики, но только в 1981 г. было установлено, что причиной его является естественный лазер.

Поделиться:
Популярные книги

СД. Восемнадцатый том. Часть 1

Клеванский Кирилл Сергеевич
31. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.93
рейтинг книги
СД. Восемнадцатый том. Часть 1

Я – Орк. Том 6

Лисицин Евгений
6. Я — Орк
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 6

Пятое правило дворянина

Герда Александр
5. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пятое правило дворянина

Менталист. Эмансипация

Еслер Андрей
1. Выиграть у времени
Фантастика:
альтернативная история
7.52
рейтинг книги
Менталист. Эмансипация

Релокант. Вестник

Ascold Flow
2. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. Вестник

Вперед в прошлое 5

Ратманов Денис
5. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 5

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец

Изгой. Трилогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
8.45
рейтинг книги
Изгой. Трилогия

Адепт. Том второй. Каникулы

Бубела Олег Николаевич
7. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.05
рейтинг книги
Адепт. Том второй. Каникулы

Делегат

Астахов Евгений Евгеньевич
6. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Делегат

Приручитель женщин-монстров. Том 1

Дорничев Дмитрий
1. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 1

Береги честь смолоду

Вяч Павел
1. Порог Хирург
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Береги честь смолоду

Никто и звать никак

Ром Полина
Фантастика:
фэнтези
7.18
рейтинг книги
Никто и звать никак

Последняя жена Синей Бороды

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Последняя жена Синей Бороды