История математики. От счетных палочек до бессчетных вселенных
Шрифт:
8. Семь свободных наук и искусств
В 529 году Юстиниан, римский император и христианин, закрыл языческие философские школы, включая Академию в Афинах. Так подошла к концу тысячелетняя история греческой математики. Многие ученые покинули страну и двинулись на Восток, в более интеллектуально развитую Персидскую империю. За двести лет до этого Константин Великий сделал христианство официальной религией римского мира и переместил административный центр из Рима в Византий, который он переименовал в Новый Рим, Константинополь. Карл Великий, император Священной Римской империи (742/747 или 748–814), впервые объединил в своих руках духовную и светскую власть. В то время Константинополь входил в состав зарождающейся исламской империи, а Багдад был научной столицей известного мира того времени. Как правитель западноевропейской империи, Карл Великий был обеспокоен интеллектуальной неполноценностью христианского мира и стимулировал проведение образовательных реформ, опиравшихся на соборные школы. Отвечал за эти реформы ученый и поэт Алкуин Йоркский (735–804), глава придворной школы Карла Великого в Ахене. Алкуин также разработал каролингское строчное письмо, легшее в основу современных латинских прописных букв. После смерти Карла Великого три его сына перессорились и снова разделили Европу на части. Образование
Список научных дисциплин состоял из семи гуманитарных наук. Учебный план их изучения был расписан еще в римские времена. Список был разделен на «тривиум» — грамматика, риторика и логика, и «квадривиум» — геометрия, арифметика, астрономия и музыка. Можно предположить, что математика была ключевой частью учебного плана, но в действительности уровень знаний был очень низким. Боэций (Аниций Манлий Торкват Северин Боэций) (ок. 480–524) — вероятно, лучший математик римского мира — определил то, что должно было стать стандартными текстами для каждой ветви квадривиума. Его трактат «Наставление в арифметике» был просто сокращенной копией «Введения в арифметику» — последней работы известного неопифагорейца Никомаха Герасского (ок. 60 — ок. 120). «Наставление в геометрии» базировалось на первых четырех книгах Евклида (причем доказательства были исключены). «Наставление в астрономии» представляло собой сильно сокращенную версию «Альмагеста» Птолемея, а «Наставление в музыке» — сборник греческих источников. Казалось, эта программа была разработана для того, чтобы соответствовать минимальным стандартам, а не создать трамплин для движения к новым открытиям. Математика использовалась, главным образом, для того, чтобы обслуживать календарь и вычислять дату Пасхи — обе задачи требовали астрономических знаний. Научная мысль Западной Европы начала возрождаться благодаря проникновению идей через границу между христианским и исламским мирами.
Вдохновленные пророком Мухаммадом и учением Корана, арабы выплеснулись за пределы своего полуострова, стремясь завоевать Персидскую и Восточную Римскую империи. Границы с Западной Европой шли от южной Испании и Сицилии до восточных регионов. Именно в Испании, особенно в городе Толедо, шел интенсивный интеллектуальный диалог между двумя культурами, которые в то же время находились практически в бесконечном конфликте друг с другом. Почти чудо, что удалось достичь такого климата научной терпимости в период, включавший два столетия крестовых походов. Прежде чем в восьмом веке нашей эры арабские войска захватили Толедо, город был столицей вестготов. В конце одиннадцатого века христианские армии отбили Толедо. Кордова стала столицей иберийского арабского государства, и его правители — Омейяды — планировали превзойти управляемый Аббасидами Багдад по блеску и учености. Гранада, столица султаната Насридов, последний оплот ислама на Иберийском полуострове, просуществовала как таковая до 1492 года, когда насридский правитель Мохаммед XII капитулировал перед испанцами и передал город королеве Изабелле Кастильской и королю Фердинанду II Арагонскому, после чего мусульмане и евреи были изгнаны из католической Испании. Однако за предшествовавшие века этот западный форпост арабской империи добился многого и, уж во всяком случае, сравнялся с Багдадом как пристанище искусств и наук. Христианские, мусульманские и еврейские ученые тесно сотрудничали здесь, стремясь свести воедино все наиболее важные научные работы на всех основных языках того времени. Тексты работ переводились с языка на язык, а основными языками науки того времени были арабский, латынь, греческий, еврейский и кастильский. Для Европы то был важнейший период: повторно открывалась утерянная греческая математика, впервые прочитывались оригинальные арабские и индийские математические труды. Космополитический характер Толедо XI–XII веков можно понять, перечислив имена некоторых ведущих ученых того времени: Роберт Честерский, Майкл Скот, Герман Каринтийский, Платон Тиволийский, Евгений Палермский, Рудольф из Брюгге, Иоанн Севильский, Герард Кремонский, Аделард Батский.
Аделард Батский (ок. 1080 — ок. 1160) — вероятно, самый известный переводчик, который тем не менее отсутствует на «доске почета» толедских переводчиков. Считается, что он выучил арабский язык на Сицилии, где столетием раньше власть перешла от арабов к норманнам, однако сохранился дух исламской науки. В 1126 году Аделард перевел с арабского языка на латынь астрономические таблицы ал-Хорезми, а в 1142 году — «Начала» Евклида. Приблизительно в 1155 году он перевел «Альмагест» Птолемея с греческого на латынь. О жизни Аделарда известно очень немного, за исключением того, что он много путешествовал по Франции, Италии и Турции.
Возможно, самым блестящим переводчиком был Герард Кремонский (1114–1187), которому приписывается выполнение более чем 85 переводов. Первоначально он пришел в Толедо, чтобы изучить арабский язык, — Герард хотел прочитать «Альмагест» Птолемея, перевода которого на латынь в то время не существовало. Герард так и остался в Толедо до конца жизни, переводя работы по математике, естественным наукам и медицине. Помимо прочего, он перевел переработанную арабскую версию «Начал» Евклида, выполненную астрономом, математиком и врачом Сабитом ибн Коррой (836–901), усовершенствовав более раннюю работу Аделарда. Первый перевод «Книги о восполнении и противопоставлении» ал-Хорезми был сделан в 1145 году Робертом из Честера. Именно в это время в европейский словарь вошли многие слова, ставшие ныне привычными, часто в результате недопонимания или неправильной транслитерации. Такие слова, как «алгоритм» и «алгебра», были искажением имени ал-Хорезми и слова «ал-джабр» из названия его труда «Ал-китаб ал мухтасар фи хисаб ал-джабр ва-л-мукабала». В полном арабском названии термин «ал-джабр» означает «завершение» и относится к методу удаления отрицательных элементов из уравнения. В тот же период в обиход вошли и другие арабские слова, такие, как «надир», «зенит», «зеро» («ноль») и «цифра».
Вскоре после этого переводы вдохновили людей на поиски новых знаний. Ранние доктрины Церкви впитали в себя значительную дозу платоновской философии, тем не менее в 529 году, спустя девятьсот лет после основания платоновской Академии в Афинах, император Юстиниан закрыл ее из страха распространения языческих воззрений. Приблизительно в то же время логика Аристотеля была бережно сохранена в «тривиуме» Боэция. Учения Платона и Аристотеля были, хотя и по-разному, тесно переплетены с христианским богословием. В результате критическая переоценка греческой науки и философии считалась в некоторых регионах атакой на власть самой Церкви. Аристотель писал работы на самые разные научные темы, включая механику, оптику и биологию. К сожалению, несмотря на то, что он делал особый акцент на наблюдения, многие из его теорий противоречили реальному опыту. Платон же весьма немного писал на темы науки и часто весьма презрительно относился к ее практическим аспектам, однако именно он подчеркивал примат математики при описании Вселенной. Согласно Аристотелю, математика должна была быть подчинена физике. Ситуация еще более усложнялась наличием переводов арабских и греческих работ, которые противоречили друг другу. Выдающимися научными центрами в то время были Париж и Оксфорд, и мы уделим особое внимание движению, известному как Оксфордская школа. Эта школа прежде всего связана с научной деятельностью членов Мертонского колледжа при Оксфордском университете. В возникающем научном подходе математика играла центральную роль.
Начало этой новой философии рационального познания положил Роберт Гроссетест (ок. 1175–1253). Он получил образование в Мертонском колледже, с 1215 по 1221 год был канцлером Оксфордского университета, с 1224 по 1232 год — первым ректором оксфордского францисканского колледжа, а затем стал епископом Линкольна — епархии, к которой относится Оксфорд. Сама по себе математика в значительной степени теологически нейтральна, но сочетание математики и физики бросило серьезный вызов общепринятым космологическим доктринам того времени. Это отлично иллюстрирует средневековая оптика. Гроссетест демонстрирует некоторую симпатию к идеям неоплатонизма, вследствие важности, которую он приписывает свету как основе всей Вселенной. Он создал космологическую теорию, напоминающую нашу концепцию Большого взрыва, согласно которой Вселенная началась как вспышка света и, расширяясь, уплотнилась до материи. В основном Гроссетест был последователем таких арабских авторов, как, например, Ибн ал-Хайсам (965–1039, возможно, более известна латинизированная версия его имени — Альхазен), и отдавал предпочтение грекам — главным образом, конечно, Аристотелю. Он утверждал, что свет — это пульсация материи, распространяющаяся в воздухе по прямой линии подобно тому, как распространяется звук. И свет, и звук двигаются с постоянной скоростью, но ясно, что свет движется быстрее. Гроссетест экспериментировал с линзами и описал их использование для увеличения предметов. Арабы делали линзы в одиннадцатом веке, а в тринадцатом веке в северной Италии уже умели изготовлять очки, хотя и не очень хорошего качества. Гроссетест считал, что радуга создается облаком, работающим как линза, поскольку свет дважды преломляется, входя в облако и выходя из него, — в отличие от Аристотеля, который полагал, что радуга возникает за счет отражения света от капелек воды. Самый знаменитый ученик Гроссетеста — Роджер Бэкон (ок. 1214 — после 1294) — пошел еще дальше. Он изучал видимый центр радуги, ее диаметр и пространственные отношения с Солнцем и наблюдателем. Более того, Бэкон считал, что радуга создается за счет внутреннего преломления в каждой капельке воды, а не во всем облаке. В трудах Бэкона, который в свое время был известен как «удивительный доктор» (doctor mirabilis), рассматривается широкий спектр математических и естественно-научных вопросов. Его рассуждения о подводных лодках и самолетах можно сравнить со значительно более поздними трудами Леонардо да Винчи (1452–1519). В конце тринадцатого века немецкий монах Теодорих (Дитрих, Тьерри) Фрейбургский (ок. 1250 — ок. 1310) экспериментировал со сферическими стеклянными флягами, заполненными водой, и хрустальными шарами, пытаясь смоделировать капли воды. Его наблюдения привели к теории внутреннего преломления света и расщепления света на цветные лучи внутри капли воды или в стекле. Сейчас эта теория обычно приписывается Рене Декарту, но мы можем видеть, что за триста лет до Декарта ученые Средневековья достигли огромных успехов в оптике.
В некоторых регионах звезда Аристотеля начала гаснуть. Роджер Бэкон писал: «Если бы я имел власть, то сжег бы все работы Аристотеля». Он видел в них тормоз на пути прогресса из-за чрезмерной самоуверенности Аристотеля, предпочтения философских догм наблюдению и опыту. Его откровенные и решительные идеи привели его в тюрьму, что в ту эпоху нередко происходило и с другими интеллектуалами. Уильям Оккам (ок. 1285–1349) продолжал нападать на Аристотеля, утверждая, что богословие и натурфилософия должны быть отделены друг от друга, поскольку первая имеет дело со знанием, полученным в результате откровения, а вторая — на основании опыта. То, что теперь известно как «бритва Оккама», было уже заявлено Гроссетестом — это философия, согласно которой в науке нужно искать самое простое решение, соответствующее фактам. Богословие и схоластическая философия стремились объяснить физическую действительность посредством дедуктивной системы, основанной на чистых предположениях. Средневековые ученые искали индуктивный переход от экспериментальных данных к физической гипотезе, который, будучи выраженным на языке математики, позволил бы вывести следствия, поддающиеся проверке. Можно увидеть, что эти средневековые ученые предпринимали колоссальные усилия, чтобы создать реальную эмпирическую философию.
Уильям из Оккама умер преждевременно в 1349 году от чумы — Черной смерти, которая неистовствовала по всей Европе. Неясно, чума была виновата в угасании математики и естественных наук, или их погубило убеждение церковников, что эта напасть была наказанием за непокорство и свободный дух. Какой бы ни была причина случившегося, но средневековая наука была пресечена в корне, и потребовалось еще двести лет, прежде чем она снова смогла расцвести.
9. Перспектива в эпоху Возрождения
Очень много писалось об итальянском Ренессансе как о периоде, определившем направление европейского сознания. Пробуждение интереса к классическим наукам соединилось с желанием выйти за пределы простого подражания и изучить новые стили, новые идеи и новые направления исследования. Этот новый путь отлично иллюстрирует взаимодействие между искусством и геометрией, и, в частности, использование перспективы. Натурализм Ренессанса был заметен в искусстве еще до того, как исследование перспективы принесло свои плоды, но перспектива усилила реалистичность изображения, формально включив точку зрения зрителя в ткань живописи. Перспектива была также очень важна для архитекторов. Возрождение классического стиля в архитектуре в значительной степени основывалось на трактате римского архитектора и инженера Марка Витрувия Поллиона (ок. 80/70 до н. э. — после 15 н. э.) «Десять книг об архитектуре» и возобновившемся интересе к изучению оставшихся классических зданий. Одними из первых авторов, писавших о перспективе, были великий итальянский архитектор Филиппо Брунеллески (1377–1446) и итальянский же ученый Леон Баттиста Альберти (1404–1472), которые соединили практическую математику каменщиков и архитекторов с геометрическими построениями, однако считается, что первым трудом, посвященным вопросам перспективы и предназначенным для живописцев, был математический трактат «О перспективе в живописи» итальянского художника и теоретика Пьеро делла Франчески (ок. 1415–1492).