Чтение онлайн

на главную - закладки

Жанры

История математики. От счетных палочек до бессчетных вселенных
Шрифт:

Отход от чисто геометрического подхода начался с публикации «Геометрии» Рене Декарта (1596–1650). Эта важная работа была всего лишь приложением к основополагающему труду Декарта «Рассуждение о методе» (1637) (полное название «Рассуждение о методе, позволяющем направлять свой разум и отыскивать истину в науках») и нередко выбрасывалась из последующих переизданий. Декарт писал «Рассуждение…», чтобы изложить философию науки, которая позволит получить знания о Вселенной вещества и движения. А правильное описание Вселенной на языке математики требовало, чтобы сам этот язык «базировался на надежном фундаменте». Несмотря на то что приложение называлось «Геометрия», по существу, оно знаменовало брачный союз алгебры и геометрии, появление дисциплины, которая теперь называется аналитической геометрией. В сущности, она доказывает эквивалентность геометрических построений и алгебраических преобразований. Кривые в ней описываются уравнениями. Декарт также перестал оценивать степени как числа, а не как геометрические объекты: х 2больше не обозначало площадь — оно стало числом, возведенным во вторую степень, его геометрическим эквивалентом была парабола,

а не квадрат.

Итак, желая решить какую-нибудь задачу, следует сперва ее рассматривать как уже решенную и дать названия всем линиям, которые представляются необходимыми для ее построения, притом неизвестным так же, как и известным. Затем, не проводя никакого различия между этими известными и неизвестными линиями, нужно обозреть трудность, следуя тому порядку, который показывает наиболее естественным образом, как они взаимно зависят друг от друга, до тех пор, пока не будет найдено средство выразить одну и ту же величину двояким образом: это то, что называется уравнением, ибо члены, полученные одним из этих двух способов, равны членам, полученным другим.

Декарт. Геометрия (1637) [13]

13

Цит. по: Ренэ Декарт. Геометрия. Перевод, примечания и статья А. П. Юшкевича. — М.—Л.: Государственное объединенное научно-техническое издательство НКТП СССР. Редакция технико-теоретической литературы, 1938. — С. 14.

Это освобождало алгебру от обязательств перед однородностью размерности — ограничения, согласно которому все члены уравнения должны были иметь одинаковую размерность. Мы находим, например, выражения вроде ххх + аах = bbb: каждый элемент здесь — куб. Действительно, Декарт с удовольствием рассуждал о кривых любой степени, то есть об x n. И это новшество имело огромное значение. Сейчас мы больше не считаем в математике х 2фактическим квадратом. Алгебра Декарта кажется нашим современникам знакомой — он использовал начальные буквы алфавита для обозначения коэффициентов, а последние буквы алфавита для обозначения переменных. Единственный символ, который кажется нам странным, — это , знак бесконечности: Декарт использовал его в качестве знака равенства.

Задача с кубами по-прежнему могла быть решена с помощью пересечения конических сечений, по методу ал-Хайями, однако теперь любому было по силам построить кубическое уравнение. Декарт изо всех сил старался связывать алгебраические манипуляции с геометрическими преобразованиями, и в итоге формула Кардано выполняла не «дополнение куба», но преобразования кубической кривой. Более того, Декарт освободил геометрию от использования построений с помощью циркуля и линейки. В «Геометрии» Декарта вы не найдете многое из того, что теперь известно как алгебраическая геометрия, например координатные оси, формулы для вычисления расстояний между точками или углов между прямыми. Важно понимать, что Декарт подарил математикам будущего новый язык постановки математических проблем и установил определенный паритет между алгебраическими и геометрическими методами.

Когда куб и «нечто» вместе равны некоторому числу, найдите два других числа, отличающиеся от него. Затем вам надо взять за правило, что его произведение всегда будет точно равно кубу одной трети этого «нечто». Тогда остаток в большинстве случаев, будучи вычтенным из кубических корней, будет равным вашему исходному «нечто». Во втором из этих действий, когда куб остается одиноким, вы будете наблюдать другие согласования: вы сразу разделите число на две части так, чтобы вторая произвела точно куб трети «нечто». Тогда у этих двух частей, по обыкновенному правилу, Вы возьмете кубические корни и сложите их вместе. Эта сумма и будет вашей целью. Третье из этих вычислений Рассчитывается с помощью второго, если вы все сделали аккуратно, поскольку по своей природе они почти согласуются. Эти «нечто» я нашел, шагая энергичной походкой, в году одна тысяча пять сотен четыре и тридцать с прочным и надежным обоснованием в городе, опоясанном морем. Решение кубического уравнения, переданное Никколо Тартальей Джероламо Кардано в 1539 году

12. Вселенная как часовой механизм

В шестнадцатом веке основным источником информации об орбитах планет оставался «Альмагест» Птолемея (см. Главу 2). Громоздкая структура Птолемеевой системы эпициклов и деферентов просуществовала в различных формах почти две тысячи лет — вероятно, потому, что и тригонометрические таблицы, и собранные в процессе наблюдения данные не были достаточно точными, чтобы продемонстрировать глубокие недочеты этой системы. Стеклянные сферы Аристотеля находились в постоянном и равномерном круговом движении — «мотором» был Аристотелев перводвигатель. Теперь же на место перводвигателя заступили ангельские силы — небесные тела стали приводиться в движение небесными духами. Для Птолемея математика была средством описать явление, а не объяснить его, и он успешно объединил философские требования Аристотеля и данные, полученные в результате наблюдения. Революция представлений о Вселенной в буквальном смысле поменяла местами небо и землю. Ключевым аспектом была роль математики — может ли точная математическая модель что-то рассказать нам о физической действительности?

Одна из самых очевидных проблем с Птолемеевой системой заключалась в том, что пока планета перемещается вокруг эпицикла, ее расстояние от Земли значительно изменяется, и, таким образом, ее видимый размер на небе также должен меняться. Это изменение наиболее очевидно в случае Луны, и, скорее всего, именно оно побудило Николая Коперника (1473–1543) выдвинуть предположение о гелиоцентрическом (с Солнцем в центре) устройстве Вселенной. Коперник получил образование в престижном Краковском университете, он также учился в Италии, а затем занял пост каноника во Фрауенбурге (Фромборке) — маленьком городке на побережье Балтийского моря. В действительности система Коперника практически не отличалась от Птолемеевой, поскольку он тоже строил орбиты как круги с эпициклами. Однако размещение Солнца в центре Вселенной изначально упростило число необходимых циклов, хотя, когда Коперник уточнил свою модель, в ней получилось даже больше эпициклов, чем у Птолемея. Система Коперника также правильно предсказывала расположение орбит планет в порядке их удаления от Солнца и позволяла оценить относительные расстояния каждой планеты от этого светила. Видимое ретроградное движение планет теперь частично объяснялось в терминах их движения относительно перемещающейся Земли, а не в терминах движения по эпициклам относительно неподвижной Земли. Великая работа Коперника «Об обращении небесных сфер» была издана только в 1543 году, в год его смерти, и отчасти вопреки его желанию.

Коперник дал свое имя революции, в которой он, похоже, играл не самую главную роль. Идеи, которые будут сформулированы в сочинении «Об обращении небесных сфер», Коперник сначала изложил в конспекте своей теории, названном «Малым комментарием о гипотезах, относящихся к небесным движениям». Эта рукопись рукописи была создана в начале 1510-х годов и распространялась среди друзей, переходила из рук в руки. Похоже, Коперник стремился не перестроить систему Птолемея, а уточнить ее, сделать лучше, «более греческой»! Каламбур заключался в том, что в модели Птолемея планеты перемещались с переменной скоростью по эпициклам, тогда как Коперник был привержен идее аристотелевского равномерного движения по идеальным окружностям с постоянной скоростью. Именно эти требования заставили его выдвинуть предположения, из-за которых нам, живущим пятьсот лет спустя, его взгляды кажутся очень современными. Согласно этим предположениям, Солнце помещается в центре Вселенной, а Земля вращается вокруг Солнца, равно как и вокруг своей собственной оси. Этот гелиоцентрический макет был, однако, не менее громоздким, чем система Птолемея, — в нем было 34 эпицикла (у Птолемея их было 40), и это для семи небесных тел плюс сфера неподвижных звезд! «Малый комментарий» был всего-навсего схемой, которую Коперник обещал детально описать позднее. Но с годами его желание издать этот труд уменьшалось, несмотря на поддержку церковных властей и самого Ватикана.

В 1514 году Коперник был приглашен участвовать в Пятом Латеранском Соборе по преобразованию календаря, но отказался приехать на том основании, что календарь не может быть преобразован должным образом до тех пор, пока не будут точно определены движения планет. В конечном счете он не был уверен в своей системе, потому что не нашел реального доказательства того, что она хоть немного лучше или точнее Птолемеевой. Коперник полагался на астрономические таблицы древних и, похоже, мало занимался самостоятельными наблюдениями. Лишь благодаря энтузиазму и усилиям его лучшего и любимейшего ученика Ретикуса труд «Об обращении небесных сфер» был издан в Нюрнберге, который к тому времени стал лютеранским городом. Однако незадолго до выхода книги Ретикус переехал из университета Виттенберга в Лейпциг, и печать труда была поручена Андреасу Осиандеру, одному из последователей Лютера. Именно тогда в книгу было вставлено известное предисловие — скорее всего, это сделал сам Осиандер. Предисловие предупреждало читателя: не важно, правдива ли система Коперника, — сравнение между различными системами полезно, чтобы решить, какую из систем легче использовать в вычислениях. Фактические движения небесных тел якобы должны оцениваться с помощью иных, философских и теологических критериев. Справедливости ради следует сказать, что подобные сомнения были и у самого Коперника, но предисловие, скорее всего, вставили, чтобы успокоить Мартина Лютера, резко возражавшего против коперниканского представления о Вселенной, а не для защиты от Ватикана, который, казалось, поддерживал предположения Коперника. Не стоит забывать, что работу астронома не помещали в ватиканский список еретических трудов до тех пор, пока не утвердилась Контрреформация, то есть приблизительно на протяжении 80 лет после ее публикации.

В «Малом комментарии» Коперник замахнулся на утверждения, которые почти не смог подтвердить в «Об обращении…». В заключительной версии системы у Коперника было даже больше эпициклов, чем у Птолемея, и планеты теперь вращались не вокруг Солнца, а вокруг точек, удаленных от Солнца (он в некотором смысле предвосхитил открытие истинной природы орбит — планета следует по эллиптической орбите, а Солнце находится в одном из фокусов эллипса, а не в его центре). В книге было одно полезное утверждение — видимое ретроградное движение планет есть следствие движения планет и Земли по отношению друг к другу. Труд оказался полностью провальным. В то время движение по земле и астрономическое движение считались двумя совершенно различными явлениями. Решающее открытие Коперника — в том, что Земля действительно движется, а его трагедия в том, что он не смог понять, как именно. Имя Коперника оставалось на слуху благодаря публикации в 1551 году его астрономических таблиц. Труд «Об обращении небесных сфер» бесследно исчез.

Поделиться:
Популярные книги

Титан империи 6

Артемов Александр Александрович
6. Титан Империи
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Титан империи 6

Как я строил магическую империю 2

Зубов Константин
2. Как я строил магическую империю
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю 2

Болотник

Панченко Андрей Алексеевич
1. Болотник
Фантастика:
попаданцы
альтернативная история
6.50
рейтинг книги
Болотник

Курсант: Назад в СССР 11

Дамиров Рафаэль
11. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 11

На границе империй. Том 3

INDIGO
3. Фортуна дама переменчивая
Фантастика:
космическая фантастика
5.63
рейтинг книги
На границе империй. Том 3

Рождение победителя

Каменистый Артем
3. Девятый
Фантастика:
фэнтези
альтернативная история
9.07
рейтинг книги
Рождение победителя

Сиротка

Первухин Андрей Евгеньевич
1. Сиротка
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Сиротка

Совершенный: пробуждение

Vector
1. Совершенный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Совершенный: пробуждение

Начальник милиции 2

Дамиров Рафаэль
2. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции 2

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Месть бывшему. Замуж за босса

Россиус Анна
3. Власть. Страсть. Любовь
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть бывшему. Замуж за босса

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Шахта Шепчущих Глубин, Том II

Астахов Евгений Евгеньевич
3. Виашерон
Фантастика:
фэнтези
7.19
рейтинг книги
Шахта Шепчущих Глубин, Том II

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12