История математики. От счетных палочек до бессчетных вселенных
Шрифт:
Во многих новых художественных движениях, возникавших в течение первых двух десятилетий двадцатого века, использовались язык и идеи новых версий геометрии, разработанных математиками. Живопись и скульптура по самой своей природе — художественное выражение соответственно двухмерного и трехмерного пространств. Но и живопись, и скульптура — это лишь ограниченное представление о мире и человеческом существовании. Как новые геометрии помогли по-новому увидеть окружающее пространство?
В эпоху итальянского Ренессанса математический расчет перспективы позволил более реалистично отобразить трехмерный мир на двухмерной поверхности. Перспектива расширила язык живописи, и художники быстро освоили новые правила. Позже они сознательно нарушили эти правила ради визуального и эстетического эффекта. В двадцатом веке концепции новых геометрий, вроде неевклидовой геометрии и многомерного пространства, и в особенности понятие четвертого измерения, легли в основу кубизма, футуризма и сюрреализма. В начале
Евклидова геометрия была теперь всего лишь одной из многих возможных конфигураций. Фактическая геометрия пространства была и продолжает быть предметом исследований математиков и физиков, но одновременно с ними художники начали исследовать геометрию восприятия и изображения. Если мы посмотрим на расширение идеи трех измерений пространства на четвертое, мы сразу же натолкнемся на проблему отображения. В книге Эдвина Эбботта «Флатландия» (1844) описана классическая аналогия того, как будут воспринимать двухмерные существа, живущие в выдуманном им плоскостном двухмерном мире, случайно попавший к ним трехмерный объект. Это представление было проиллюстрировано Клодом Брагдоном во многих книгах, включая «Человек-квадрат: притча о пространстве более высокого порядка» (1912). Смысл этого представления заключался в том, чтобы составить интуитивное представление о целом объекте при помощи последовательного выполнения ряда срезов, или поперечных сечений, проходящих через объект. Таким образом, чтобы живопись могла выполнить свое предназначение как средство выражения и отобразить весь объект, не важно трехмерный или четырехмерный, нужно было выполнить последовательность сечений, проходящих через объект, или сделать множество изображений объекта с различных ракурсов. Кубисты именно так и представляли себе предмет их живописи.
Перспектива стала считаться ограничением и была отброшена, поскольку сужала представление об объектах. Различие между восприятием объектов и самими этими объектами, о котором говорил философ Иммануил Кант, легло в основу многогранных форм кубизма. Возникло множество формулировок четвертого измерения, выходящих за пределы строго математического и пространственного определения: для некоторых людей это было платоновское царство идеального, мистики и иррациональности. Короче говоря, четвертое измерение освободило художника, позволив ему исследовать действительность, лежащую за рамками трехмерной перспективы. Эта свобода была подхвачена не только кубистами, но и итальянскими футуристами. Их интеллектуальный манифест 1909 года был отчасти политическим, отчасти художественным. Они провозглашали современность, индустриализм и технологичность. Художники типа Умберто Боччони, Джино Северини и Джакомо Балья выражали в своем творчестве динамизм четвертого измерения.
Давайте себе представим любое трехмерное тело, например африканского льва, в промежуток времени между любыми двумя моментами его существования. Между львом L0, или львом в момент времени t=0, львом L1, или финальным львом, расположено бесконечное число африканских львов самых разных видов и форм. Теперь, если мы рассмотрим множество, сформированное всеми этими точечными львами, существовавшими во все мгновения и во всех положениях в пространстве, и затем изучим развертывающуюся поверхность, то мы получим огибающего суперльва, наделенного чрезвычайно тонко нюансированными морфологическими особенностями. Именно такие поверхности мы называем «литохрониками».
Вероятно, самым влиятельным математиком в мире официоза Франции в то время был Анри Пуанкаре, уважаемый интеллектуал, статьи которого выходили далеко за пределы математики, затрагивая вопросы политики, образования и этики. В 1906 году он стал президентом Академии наук, и его популярные работы вывели физику и математику на общественную сцену. Его философия относительности знания и сосредоточенность на творческой стороне математической деятельности, включая роль подсознательной инкубации трудных проблем, оказали огромное влияние на научную мысль начала двадцатого столетия. Возможно, в кубистских кругах не меньшее влияние имел малоизвестный математик Морис Принсе, специалист по страховой математике и живописец-любитель, который исследовал математику неевклидовой геометрии совместно
В 1905 Альберт Эйнштейн, в то время все еще скромный патентный чиновник, впервые написал о специальной теории относительности. В 1916 году, став профессором, он издал свою общую теорию. К концу 1920-х годов четвертое пространственное измерение было почти полностью заменено идеей относительно четвертого темпорального, или временного, измерения. Время, а следовательно, и движение полностью завладело умами некоторых художников, таких, как Марсель Дюшан и Умберто Боччони с его скульптурой «Уникальные формы непрерывности в пространстве» (1913), а также Франтишека Купки, и породило абстрактное искусство Казимира Малевича.
Кубизм был основан Пабло Пикассо и Жоржем Браком. Картина Пикассо «Авиньонские девицы» (1907) была первой кубистской картиной. Наиболее плодотворный период кубизма закончился в 1922 году, поскольку его последователи к тому времени отошли от ранее единого стиля. Хотя кубизм считался последовательным течением в искусстве, в основной философии и практике всегда существовали некоторые различия. Пикассо, кажется, находился в некоторой степени под влиянием математических идей, заявляя, что на него сильно повлияли смещающиеся перспективы Сезанна и строение африканского искусства и скульптуры. Брака также очень интересовали геометрические представления, ведь именно он придумал термин «кубизм». Конечно, можно проследить и непрекращающийся интерес к более традиционным геометрическим представлениям перспективы и структуры пространства. В 1912 году в Париже происходила выставка, оказавшая значительное влияние на развитие искусства. Она называлась «Золотое сечение» — ссылка на классическую пропорцию, которую часто можно увидеть в архитектуре и в искусстве. В то же самое время художники вроде Гриса и Жака Виллона приблизились к чисто абстрактной и геометрической форме кубизма, лишенного любых предметно-изобразительных свойств.
Оценить влияние на искусство начала двадцатого столетия неевклидовой геометрии намного труднее, чем воздействия идеи четвертого измерения. Проблема может корениться в сложности отображения неевклидовых пространств. Итальянский математик Эудженио Бельтрами (1835–1900) отобразил геометрию Лобачевского в виде физической модели псевдосферы. Простого знания о существовании неевклидовой геометрии было достаточно, чтобы дать волю артистическому воображению. Возможно, ее формальный математический характер привел к тому, что она оказалась менее плодотворной, чем артистическая свобода, предложенная четвертым измерением. Живописцы вроде Дюшана были очень влиятельными, но они оставались в меньшинстве со своим предложением, чтобы художники изучали математику и другие точные науки. Однако анализ неевклидовой геометрии оказал влияние на основателя дадаизма — Тристана Тцара — и сюрреалистов.
В 1936 году живописец Шарль Сирато издал «Манифест дименсионизма». Цитируя теории Эйнштейна как один из источников своего вдохновения, он объявляет, что, «одухотворенные новой концепцией мира», искусства проникли в новое измерение. Живопись должна была оставить плоскость и выйти в объемное пространство, таким образом придя к пространственным конструкциям и инсталляциям. Он настаивал, что «скульптура должна покинуть замкнутое, неподвижное и мертвое пространство, то есть трехмерное пространство Евклида, чтобы завоевать артистически выразительное, четырехмерное пространство [Германа] Минковского». Манифест был подписан внушительным числом ведущих художников. Декларация учитывала и основные интерпретации четвертого измерения, то есть как пространственное и духовное измерение, так и время.
Однако, вообще говоря, немногие живописцы после 1930-х годов демонстрировали открытый интерес как к четвертому пространственному измерению, так и к неевклидовым пространствам, за исключением сюрреалистов. Андре Бретон нашел новые геометрии идеально подходящими в качестве аргументов в пользу новой «сюрреальности». Хотя сюрреалистичная теория Бретона в значительной степени базировалась на анализе подсознания Фрейда, на их создание также оказали влияние измерения высшего порядка, четырехмерное пространство-время, объединенное с более высокими измерениями иррационального и подсознательного. Мы можем заметить этот интерес в названиях некоторых из их работ, вроде «Молодой человек, удивленный полетом неевклидовой мухи» Макса Эрнста (1942), а также в их содержании. Примеры таких произведений — «пластичные» часы Сальвадора Дали, а также «Постоянство памяти» (1931) и гиперкуб — четырехмерный аналог куба — в его «Распятии» (Corpus Hypercubicus) 1954 года. Наиболее научный подход к искусству продемонстрировал сюрреалист Оскар Домингес, который, работая в скульптуре, был очарован жизнью объектов во времени. Его идеи относительно литохронических поверхностей кажутся очень близки к скульптурным работам Боччони. Оскар Домингес создал ряд пространственных «космических» картин, многогранные формы которых сравнивались с геометрическими моделями, построенными в Институте Анри Пуанкаре и показанными на фотографиях Мэна Рея на выставке сюрреалистов 1936 года. Но, чтобы неевклидовы геометрии явились миру во всей своей эстетической прелести и математической точности, надо было дождаться появления компьютеров.