Чтение онлайн

на главную

Жанры

История с узелками
Шрифт:

— Нет, молодой человек, концы дорожки не смыкались. Каждый раз, когда дорожке уже, казалось, не оставалось ничего другого, как сомкнуться, она поворачивала и вновь шла вокруг всего сада рядом со своим первым отрезком, потом снова поворачивала и снова шла вокруг всего сада вдоль предыдущего отрезка и так до тех пор, пока в саду не осталось ни клочка земли.

— Дорожка извивалась, как змея с углами? — спросил Ламберт.

— Совершенно так же! И если пройти вдоль всей дорожки до последнего дюйма, держась ее середины, то длина пройденного пути окажется равной 2 1/ 8мили. А пока вы найдете длину и ширину сада, я поразмыслю над тем, почему объем воды в большом ведерке оказался меньше объема маленького ведерка.

— Вы, кажется, сказали, что у вашего друга в саду росли чудеснейшие цветы? — спросил Хью, когда Бальбус уже выходил из комнаты.

— Сказал, — ответил Бальбус.

— А где же они росли? — удивился Хью, но Бальбус сделал вид, что не расслышал вопроса. Предоставив мальчикам ломать голову над заданной задачей, он уединился у себя в комнате,

чтобы поразмыслить над обнаруженным Хью механическим парадоксом.

— Для простоты предположим, — бормотал он, расхаживая взад и вперед по комнате и глубоко засунув руки в карманы, — что у нас имеется цилиндрический стеклянный сосуд, на поверхности которого через каждый дюйм нанесены метки, и мы заполним его водой до десятой метки. Условимся считать, что каждое деление на стенке сосуда соответствует одной пинте воды. Возьмем теперь сплошной цилиндр, каждый дюйм которого имеет объем в полпинты воды, и погрузим его на 4 дюйма в воду, налитую в первый цилиндр. Дно сплошного цилиндра достигнет отметки 6 дюймов на стенке первого цилиндра. При этом сплошной цилиндр вытеснит 2 пинты воды. Что станет с этими двумя пинтами? Если бы сплошной цилиндр не выступал над поверхностью воды, то эти две пинты преспокойно расположились бы сверху, заполнив наружный цилиндр до отметки 12 дюймов. Но, к несчастью, сплошной цилиндр выступает над поверхностью воды, занимая половину объема, который мог бы вместиться между отметками 10 и 12 дюймов. Следовательно, оставшаяся часть пространства может вместить лишь одну пинту. А что же станется со второй? Если бы сплошной цилиндр не выступал над поверхностью воды, эта пинта преспокойно могла бы разместиться сверху, заполнив наружный цилиндр до отметки 13 дюймов. Но, к сожалению… О, тень великого Ньютона! — воскликнул Бальбус в ужасе. — Что же сможет остановить непрестанно поднимающийся уровень воды?

И тут его осенила блестящая идея.

— Напишу-ка я обо всем этом небольшой трактат.

Трактат, написанный Бальбусом

Известно, что тело, погруженное в жидкость, вытесняет часть жидкости, объем которой равен объему тела. При этом уровень жидкости поднимается ровно настолько, насколько он поднялся бы, если бы к уже имеющейся жидкости добавили количество жидкости, объем которого равен объему погруженного тела. Ларднер обнаружил, что частичное погружение тела сопровождается точно такими же явлениями: количество вытесненной жидкости в этом случае равно по объему погруженной части тела, а уровень жидкости поднимается ровно настолько, насколько он поднялся бы от прибавления объема жидкости, равного объему погруженной части тела.

Предположим, что на поверхности жидкости каким-либо образом удерживается частично погруженное в нее тело. Поскольку часть жидкости вытесняется, уровень ее поднимается. Вследствие повышения уровня жидкости какая-то новая часть тела оказывается погруженной, вытесняет новую порцию жидкости, что приводит к новому повышению уровня. В свою очередь новое повышение уровня вызывает дальнейшее погружение тела, что приводит к вытеснению еще одной порции жидкости и т. д. Ясно, что весь этот процесс должен продолжаться до тех пор, пока в жидкость не погрузится все тело, после чего начнет погружаться то, что его удерживало (будучи соединенным с телом, это нечто может рассматриваться, по крайней мере при решении интересующей нас задачи, как часть тела). Так, если вы возьмете шест длиной 6 футов, опустите его конец в бушующие воды и подождете достаточно долго, вы в конце концов погрузитесь в воду. Вопрос о том, откуда берется вода (относящийся к высшим разделам математики и потому не рассматриваемый в данной работе), не имеет отношения к морю. Представим себе человека, стоящего во время прилива у самой воды с шестом в руках, который частично погружен в море. Человек этот стоит прямо и неподвижно, и мы все знаем, что он непременно утонет. Люди, каждый день во множестве погибающие таким образом, дабы удостовериться в философской истине, люди, чьи тела безрассудные волны мрачно выносят на наши неблагодарные берега, имеют большее право называться мучениками науки, чем Галилей или Кеплер. Если воспользоваться проникновенным высказыванием Кашута, именно этих людей следовало бы назвать безвестными полубогами нашего девятнадцатого века.

— Должно быть, в мои рассуждения где-то вкралась ошибка, — сонно пробормотал Бальбус, вытягивая свои длинные ноги на софе. — Надо проверить их еще раз.

Очевидно, для того чтобы лучше сосредоточиться, он закрыл глаза. В течение ближайшего часа или около того его медленное мерное дыхание свидетельствовало о глубоком внимании, с которым он изучал новый и несколько парадоксальный взгляд на интересовавший его предмет.

{Ответ 9}

Узелок IX

Задача 1.

В учебниках физики говорится, что тело, полностью погруженное в жидкость, вытесняет столько жидкости, что ее объем равен объему самого тела. Справедливо ли это утверждение для маленького ведерка, плавающего в другом ведерке несколько больших размеров?

Решение.

Говоря о теле, «вытесняющем жидкость», авторы учебников имеют в виду, что оно «занимает пространство, которое можно заполнить жидкостью, не вызывая каких-либо изменений в окружающей среде». Если уничтожить ту часть меньшего ведерка, которая выступает над поверхностью воды в большем ведерке, а вместо остальной части ведерка взять столько воды, сколько оно вмешает, то уровень воды в большом ведерке в полном соответствий с учебниками физики останется неизменным.

Задача 2.

Из рассуждений, приводимых в трактате Бальбуса, следует, что при погружении тела в сосуд с водой уровень воды последовательно поднимается на 2 дюйма, 1 дюйм, 1/ 2дюйма и т. д. Бальбус считает ряд, образуемый приращениями уровня, бесконечным и заключает отсюда, что уровень воды должен неограниченно возрастать. Правильно ли такое заключение?

Решение.

Нет, неправильно. Сумма всех приращений уровня никогда не достигнет 4 дюймов, ибо, сколько бы членов ряда мы не взяли, от отметки 4 дюйма нас будет отделять расстояние, равное последнему взятому члену ряда.

Задача 3.

Сад имеет форму «вытянутого» прямоугольника, длина которого на 1/ 2ярда больше ширины. Дорожка шириной в 1 ярд и длиной в 3630 ярдов, усыпанная гравием и закрученная спиралью, заполняет сад. Найти длину и ширину сада.

Ответ.

Ширина сада 60 ярдов, длина — 60 1/ 2ярда.

Решение.

Разделим дорожку на прямые участки и «повороты» — квадраты размером 1x1 ярд в «углах». Число полных ярдов и их долей, пройденных вдоль прямых участков дорожки, очевидно, равно площади прямых участков дорожки, измеряемой в квадратных ярдах. Расстояние, проходимое на каждом «повороте», равно 1 ярду, а площадь «уголка» также равна 1 ярду (но уже квадратному). Таким образом, площадь сада равна 3630 квадратным ярдам. Если x— ширина сада в ярдах, то x(x + 1/ 2) = 3630. Решая это квадратное уравнение, получаем x = 60. Следовательно, ширина сада равна 60 ярдам, а его длина — 60 1/ 2ярда.

Узелок X

ПИРОЖКИ

Пирожки, пирожки, горячие пирожки!

— Ох как грустно! — воскликнула Клара, и глаза ее наполнились слезами.

— Грустно, но с точки зрения арифметики весьма любопытно, — последовал менее романтический ответ ее тетушки. — Одни из них потеряли на службе родине руку, другие — ногу, третьи — ухо, четвертые — глаз…

— А некоторые лишились всего сразу… — задумчиво прошептала Клара, когда они с тетушкой проходили мимо длинных рядов нежившихся на солнце загорелых и обветренных ветеранов. — Тетя, вы видите того старика с красным лицом? Он что-то чертит на песке своей деревянной ногой, а остальные внимательно его слушают. Должно быть, он чертит схему какого-нибудь сражения…

— Сражения при Трафальгаре! Ясно, как дважды два — четыре! — тотчас же перебила Клару тетушка.

— Вряд ли, — робко возразила племянница. — Если бы он принимал участие в сражении при Трафальгаре, его бы давно уже не было в живых.

— Не было бы в живых! — презрительно повторила тетушка. — Да он живее нас с тобой, вместе взятых! По-твоему, рисовать на песке да еще деревянной ногой не значит быть в живых? Хотела бы я знать, что тогда по-твоему означает быть в живых!

Клара растерянно промолчала: она никогда не была особенно сильна в логике.

— Вернемся-ка мы лучше к арифметике, — продолжала Безумная Математильда. Эксцентричная старая леди не упускала случая подбросить своей племяннице какую-нибудь задачку. — Как ты думаешь, какая часть ветеранов потеряла и ногу, и руку, и глаз, и ухо?

— Я… я не знаю. Откуда я могу знать? — с трудом произнесла оробевшая девочка: кому-кому, а ей хорошо было известно, что последует дальше.

— Разумеется, без необходимых исходных данных ты ничего узнать не сможешь, но я сейчас дам тебе…

— Дайте ей пирожок, миссис! Только у нас в Челси умеют печь такие пирожки. Девочки их очень любят, — раздался вдруг приятный голос, и разносчик пирожков, проворно приподняв край белоснежной салфетки, показал аккуратно уложенные в корзине пирожки, выглядевшие весьма соблазнительно. Пирожки были квадратной формы, щедро смазаны яйцом, румяны и блестели на солнце.

— Нет, сэр! Я не имею обыкновения давать своей племяннице такую гадость. Убирайтесь прочь! — и старая леди угрожающе взмахнула зонтиком. На добродушного разносчика эта гневная тирада, казалось, не произвела ни малейшего впечатления. Прикрыв пирожки салфеткой, он удалился напевая.

— Пирожки эти — просто яд! — сказала старая леди. — То ли дело арифметика. Уж она-то всегда полезна!

Клара, вздохнув, проводила голодным взглядом быстро уменьшавшуюся вдали корзину с пирожками и стала послушно внимать своей неутомимой тетушке, которая тут же начала излагать условие задачи, производя все вспомогательные подсчеты на пальцах.

— Скажем, так: 70 % ветеранов лишились глаза, 75 — уха, 80 — руки и 85 — ноги. Просто великолепно! Спрашивается, чему равна наименьшая часть ветеранов, лишившихся одновременно глаза, уха, руки и ноги?

Больше ни тетушка, ни племянница не произнесли ни слова, если не считать восклицания «Пирожки!», вырвавшегося у Клары, когда разносчик со своей корзиной скрылся за углом. В полном молчании обе леди — преклонных лет и юная — дошли до старинного особняка, в котором остановился вместе с тремя сыновьями и их почтенным наставником отец Клары.

Бальбус, Хью и Ламберт опередили тетушку и племянницу лишь на несколько минут. Они вернулись с прогулки, во время которой Хью умудрился задать головоломку, не только безнадежно испортившую настроение Ламберту, но и поставившую в тупик самого Бальбуса.

Поделиться:
Популярные книги

Хозяйка лавандовой долины

Скор Элен
2. Хозяйка своей судьбы
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Хозяйка лавандовой долины

Беглец

Бубела Олег Николаевич
1. Совсем не герой
Фантастика:
фэнтези
попаданцы
8.94
рейтинг книги
Беглец

Сердце Дракона. Том 19. Часть 1

Клеванский Кирилл Сергеевич
19. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.52
рейтинг книги
Сердце Дракона. Том 19. Часть 1

Возмездие

Злобин Михаил
4. О чем молчат могилы
Фантастика:
фэнтези
7.47
рейтинг книги
Возмездие

Я – Орк. Том 2

Лисицин Евгений
2. Я — Орк
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 2

Запретный Мир

Каменистый Артем
1. Запретный Мир
Фантастика:
фэнтези
героическая фантастика
8.94
рейтинг книги
Запретный Мир

Ратник

Ланцов Михаил Алексеевич
3. Помещик
Фантастика:
альтернативная история
7.11
рейтинг книги
Ратник

Восьмое правило дворянина

Герда Александр
8. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восьмое правило дворянина

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец

Гром над Академией. Часть 1

Машуков Тимур
2. Гром над миром
Фантастика:
фэнтези
боевая фантастика
5.25
рейтинг книги
Гром над Академией. Часть 1

Падение Твердыни

Распопов Дмитрий Викторович
6. Венецианский купец
Фантастика:
попаданцы
альтернативная история
5.33
рейтинг книги
Падение Твердыни

Кодекс Охотника. Книга IX

Винокуров Юрий
9. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга IX

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Камень

Минин Станислав
1. Камень
Фантастика:
боевая фантастика
6.80
рейтинг книги
Камень