Избранные труды
Шрифт:
Между тем системы знания, предмета и объекта совершенно очевидно не совпадают друг с другом и ни в коем случае не могут отождествляться.
Научное знание всегда системно. Уже простейшие виды знания, такие, как «береза — белая», «металл — электропроводен» и т. п., представляют собой системы; форма их состоит из элементов, связанных друг с другом, а вместе с тем и содержание выступает расчлененным и одновременно связанным в некоторое единство. И какие бы другие более сложные виды знаний мы ни брали — отдельные положения или целые теории, — они всегда будут системными. Разница заключается только в виде и сложности самих систем.
Обратимся теперь к объектам. Всякий реальный объект, если говорить о его материальной природе, т. е. рассматривать его как таковой, вне связи с теми или иными задачами изучения, представляет собой сложное целое и имеет определенное строение. Но в зависимости от задач исследования он может рассматриваться
Рассмотрим теперь взаимоотношение между системой объекта и системой знания о нем.
Очень часто, даже если знание системно, в его системе никак не отображается система объекта. Чтобы убедиться в этом, достаточно проанализировать несколько простых примеров.
Представим себе простую модель: три шарика находятся на определенном расстоянии друг от друга и образуют какую-то организацию. Предположим далее, что перед нами стоит задача описать эту систему, в том числе, естественно, отношения между ее элементами. Это нетрудно сделать с помощью системы координат. Предположим, что ось координат проходит через центр первого шарика и расположена горизонтально. Тогда отношение двух других шариков к первому мы сможем описать с помощью двух характеристик — их расстояний от него и углов относительно оси координат (схема 10). Это будут соответственно l1α1, и l2α2. Рассмотрим отношение между системой этого описания и объективной системой организации. Предположим сначала, что все шарики одинаковы. Поэтому в целом ряде случаев специальная фиксация их как элементов объективной системы вообще не нужна. В характеристиках описания фиксируются исключительно сами отношения. Вместе с тем эти характеристики выступают как элементы знания и они определенным образом сгруппированы. Между характеристиками l и α по существу нет никаких отношений и связей: мы можем как угодно менять их местами, хотя и существует определенная последовательность, фиксирующая порядок получения самих этих характеристик. Между характеристиками l1 и α1, существует известная совместность, которая выражается либо близостью их записи, либо запятой, но может быть также выражена знаком «и». Между группами l1α1, и l2α2 тоже существует определенная совместность, которая выражается знаком «и».
Поскольку между первым и вторым «и» существует свое отношение и своя субординация (первый связывает характеристики, которые относятся к одному элементу объективной системы, а второй — характеристики, относящиеся к разным элементам), в принципе можно говорить о системности самого описания. Против этого вряд ли есть смысл возражать, но важно подчеркнуть, что в подобной системе описания и в знаках логических связей никак не отражены (не изображены) отношения объектов. Система объекта есть одно, а система описания этого объекта есть нечто совсем другое, и между ними нет никакого изоморфизма или отношения изображения.
Важно также подчеркнуть значительную произвольность подобной системы описания по отношению к системе объекта. Она определяется не столько объективными особенностями описываемой системы (хотя и это имеет место), сколько способом самого описания. Если, к примеру, мы примем за ось координат не горизонтальную, а вертикальную линию, соединяющую первый и второй шарики, то наше описание, как нетрудно заметить, значительно изменится. Положение второго шарика будет характеризоваться теперь уже не двумя координатами, а только одной. Вместе с тем исчезает первый знак логической связи; положение третьего шарика будет характеризоваться
Расхождение между системой описания и системой объекта можно выявить и по другим линиям сравнения.
Но и этого мало. Исключительное значение во всем круге системно-структурных исследований играет еще различение
Отчетливее всего различие между ними выступает тогда, когда мы сравниваем между собой так называемые «эмпирическую» и «абстрактно-логические» системы описания сложного объекта.
Чтобы провести это сравнение, мы воспользуемся приемом так называемого «двойного знания». Предположим, что мы имеем некоторый объект, который в отношении его внутреннего строения является «черным ящиком», пользуясь языком кибернетики. Но вместе с тем этот объект может быть познан как угодно точно и подробно со стороны своих «внешних», или эмпирических, свойств. Предположим для упрощения, что у него есть три входа и выхода — А, В, С — и мы можем, в соответствии с нашими целями, менять каждое из значений А, В или С в каких-то определенных границах (схема 11).
Предположим также, что в другом знании мы имеем совершенно полное, можно сказать абсолютное, представление о внутреннем строении или структуре этого объекта (схема 12). Мы будем определенным образом сравнивать между собой эти знания, будем переходить от одного к другому, стараясь выяснить отношение реальной структуры объекта — «черного ящика» к получаемым эмпирическим знаниям о нем.
Чтобы провести конкретное рассуждение, предположим, что рассматриваемый нами объект имеет очень простую структуру — состоит из элементов А, В, С, связанных между собой двусторонними связями. Для упрощения предположим также, что каждый из этих элементов дает одно эмпирическое проявление — это будут соответственно А, В и С. Мы можем произвольно менять эти значения «на входе» и измерять соответствующее изменение значений «на выходе» других элементов. Иначе говоря, в нашем рассуждении элементы структуры объекта не будут отличаться от эмпирически выявляемых сторон. Это очень сильное упрощение, и мы таким путем снимаем одну из основных проблем структурного анализа, но это значительно облегчит наше рассуждение и не повредит выяснению того основного, что нам сейчас необходимо. Положим далее, что мы применяем при исследовании объекта эмпирическую процедуру, принятую во всех естественных науках. Мы фиксируем одну из сторон, к примеру С; добьемся того, чтобы на протяжении всего опыта ее значение оставалось постоянным, и, меняя значение другой, к примеру А, будем определять вызванные этим изменения значений третьей стороны В. Мы получим два ряда соответствующих друг другу значений.
Это будет табличное выражение зависимости, которая существует в данном объекте между А и В. Чтобы выразить эту зависимость, мы должны будем произвести определенные сопоставления найденных значений и подобрать ту аналитическую математическую форму, которая будет соответствовать всем зафиксированным в таблице значениям. Пусть это будет β = f1(α). Это математическое выражение даст нам определенное изображение рассматриваемого объекта, именно, эмпирическое изображение зависимости стороны В от стороны А при постоянном С.
Но поставим перед собой вопрос: в какой мере эта математическая функция является изображением связи между А и В в структуре объекта? Простое рассуждение показывает, что фактически ни в какой. Ведь изменение значений В после вызванных нами изменений значений А было результатом не только непосредственной связи между А и В, но в такой же мере и опосредствованной связи А — > С — > В (тот факт, что С оставалось неизменным в ходе опыта, в общем случае нисколько не говорит о том, что этой связи вообще не было или что она «не работала»). Но и этого мало, одним из компонентов этого изменения В была и обратная связь В с А через С. Таким образом, можно сказать, что функция β = f1(α) изображает не связь В с А как таковую, а суммарное действие целого ряда связей, по существу всех связей в структуре объекта — и А <-> В, и В <-> А, и А <-> С <-> В, и В <-> С <-> А.