Избранные труды
Шрифт:
Они пришли в логику вместе с наукой нового времени и были обобщением приемов практической исследовательской работы лаборатории XVII и XVIII столетий; это были методы наблюдений, проводившихся с целью определения причинной связи и зависимости.
Одним из важнейших среди них был прием так называемого «единственного различия». Принцип его сам Дж. Ст. Милль и его последователи выражали так. Если после введения какого-либо фактора появляется или после удаления его исчезает известное явление, причем мы не вводим и не удаляем никакого другого обстоятельства, которое могло бы иметь в данном случае влияние, и не производим никакого изменения среди первоначальных условий явления, то указанный фактор и составляет причину явления [Минто, 1901, с. 207]. Позднее этот принцип стали изображать в виде схемы умозаключения:
Случаи
Вывод: причина явления а есть обстоятельство А [Асмус, 1947, с. 268–269].
Эта схема накладывается на реальные исследуемые ситуации: если «поведение» двух каких-либо объектов, факторов или явлений в ней соответствовало изображенному на схеме, то мы могли утверждать, что между ними есть причинная связь. В этой схеме индуктивного вывода А. А. Зиновьев нашел то, что ему было нужно: она удовлетворяла всем поставленным выше требованиям — была особым изображением содержания знания о связи, отличным от формы самого знания, и вместе с тем, в противоположность всем другим видам изображений, отчетливо показывала сам способ построения знания.
Чтобы избавиться от некоторых недостатков традиционных схем. Зиновьев ввел ряд новых, формально точно определенных понятий и их специальных знаковых изображений. Основным стало знаковое изображение «объекта сопоставления», куда вошли как знаки самих реальных «предметов» — а, b, с… так и знаки выделенных в них свойств или признаков — Q, R, Р… В целом «объект» изображался знаковыми группами вида (Qa), (Rb), (Pb) и т. д. Отсутствие «объекта» рассматривалось тоже как определенный объект и изображалось знаковой группой вида (—Qa). Фиксация «объекта» в соответствующем знании выражалась в знаковой группе «Qa» или «—Qa».
После того как были выведены эти знаковые изображения и соответствующие им понятия, приведенную выше схему индуктивного сопоставления стало возможным изобразить в виде таблицы:
I(Qa)(Rb)II(-Qa)(-Rb)
Первая строка ее должна была изображать одну ситуацию сопоставления «объектов» Qa и Rb, вторая строка — другую ситуацию сопоставления, в которой отсутствие Qa «сопровождалось» отсутствием Rb. Сопоставление этих двух ситуаций позволяло заключить о наличии связи между Qa и Rb и строить высказывание: «Если существует (Qa), то существует (Rb). В целом вся таблица, выражающая сопоставление ситуаций, называлась «набором». Порядок сопоставления «объектов» в ситуациях и ситуаций в наборах определял тип выявляемой связи [Зиновьев, 1959 а, с. 113–138]. Так, по мнению А. А. Зиновьева, разнообразные наборы ситуаций могут служить обобщенной моделью всех тех содержаний знаний, которые мы называем «связями».
На основе этих представлений и знаковых изображений А. А. Зиновьев построил математико-логическое исчисление связей, определил условия логической истинности различных сложных высказываний о связях, построенных по определенным правилам из более простых высказываний. И эта работа, повторим снова, является наиболее принципиальной и фундаментальной из всех, выполненных к настоящему времени по проблемам логического определения связи.
Но, несмотря на все свои достоинства, она имеет один существенный недостаток: не может охватить всех существующих в настоящее время и широко употребляемых в науке понятий связи; и даже, наверное, можно сказать еще резче: введенное в ней понятие связи вообще не соответствует большинству из этих употреблений, и в частности всем знаниям о связях объектов и элементов в целом, всем кинематическим и механическим представлениям связи и т. п.
На наш взгляд, причина этого заключается в основаниях метода анализа — они оказались слишком узкими и, может быть, даже просто неправильными. В обоснование этого утверждения мы хотим рассмотреть
Среди разнообразных знаний о связях, встречающихся в современной научной литературе, можно выделить два полярных типа: один фиксирует зависимости или связи между свойствами, признаками объектов, другой — связи между самими объектами, рассматриваемыми в качестве элементов целого. Характерным примером знания первого типа является аналитическая форма выражения какого-либо «закона», скажем закона Бойля — Мариотта о зависимости между объемом и давлением газа: pV = const. Примером знания второго типа может служить описание структурной формулы какого-либо химического соединения, скажем, в простейшем случае вида: Са(ОН)2. И если мы возьмем знания о связях второго типа, то оказывается, что как способы их построения, так и способы формального оперирования с ними совершенно не соответствуют тому, что А. А. Зиновьев описал в понятиях «объектов сопоставления», ситуаций и наборов. Его понятие построено таким образом, что не может охватить и выразить связи между элементами реальной структуры объектов, элементами, получаемыми путем разложения этой структуры. И в этом мы видим его первое основное противоречие. Но тогда из этого утверждения должен следовать еще и вопрос: каким образом мы выявляем связи структуры самих объектов?
Из этого же утверждения мы можем вывести и второе противоречие существующего понятия связи. Дело в том, что «объекты», фигурирующие в таблицах ситуации сопоставления, являются на самом деле не объектами, а предметами знания, но предметы являются не чем иным, как связками замещения операционно выделенных содержаний знаками, и рассматривать их нужно именно таким образом, т. е. учитывая многие плоскости знакового замещения и анализируя, что нового вносит в процесс выявления содержания знания каждая из них. То, что в существующем понятии связи не учитывается эта сторона дела, является важнейшим его дефектом, и именно из-за этого в нем не удается «схватить» реальные языковые средства и особенности содержания различных научных высказываний о связях.
Дело в том, что содержание знаний о связи задается не только тем, какие сопоставления осуществляются в плоскости исходных объектов, но также и тем, в каких знаковых средствах фиксируется выявленное таким образом содержание, и что именно, в соответствии с этим, становится объектом последующих сопоставлений. Подавляющее большинство современных знаний о связях имеет своим содержанием сопоставления, в которых участвуют, кроме самих объектов, разлагаемых на части и синтезируемых из этих частей, еще знаки разного типа, лежащие в различных плоскостях замещения и «снимающие» в себе разное содержание. Например, в современной химии это, кроме самих реагирующих веществ и описаний их меняющихся свойств, еще формулы состава, структурные формулы, физико-химические и физические модели атомов и молекул вещества. И сопоставление, выделяющее в объектах новое содержание, в частности их структуру, идет все время за счет переходов от одних знаковых средств и плоскостей замещения к другим. Как бы «в разрезе» вся эта система замещений и происходящих на его основе сопоставлений изображена на схеме 13.
Надо специально сказать, что появление особых изображений состава и структуры химических соединений или физико-химических и физических моделей вещества кардинальным образом меняет характер рассуждений и выводов в химии. Меняется сама логика мышления, логические правила содержательного и формального решения задач. В частности, меняются способы построения высказываний о связях: чтобы получить знания о связях на основе уже имеющихся структурных формул, нужны совсем иные схемы сопоставлений и вообще процедур, нежели те, к которым мы должны были прибегать, получая знания о связях на основе формул состава. И то же самое происходит во всех других науках по мере развития их знаковых средств и появления новых плоскостей замещения.
Поэтому вполне естественно, что логическая теория знаний о связях, не учитывающая этих моментов, оказывается очень ограниченной и не может охватить не только всех, но даже самых главных типов этих знаний. Чтобы построить действительно общую логическую теорию высказываний о связях, нужен принципиально иной подход к проблеме, иные логические основания, и в частности учитывающие, с одной стороны, эмпирическое различение связей между объектами и связей между признаками, а с другой — многоплоскостное строение всякого знания. Реализуя этот принцип, мы хотим рассмотреть