Чтение онлайн

на главную

Жанры

Измерение мира. Календари, меры длины и математика
Шрифт:

Почему Академия наук определила метр на основе длины земного меридиана?

К тому времени уже было получено несколько достаточно точных оценок его длины, однако требовалось реализовать намного более масштабный проект, который позволил бы добиться высокой точности измерений, необходимой для определения новой меры. Зачем нужно было начинать намного более дорогостоящий проект, чем тот, в котором метр определялся на основе маятника? Решение комиссии вызвало возмущение некоторых государственных деятелей, в числе которых был и Жан-Поль Марат. Академия наук к тому моменту неоднократно отвергла его научные труды, большинство из которых было посвящено физике.

Комиссия отказалась от измерения экватора, так как производить измерения

в малоизвестных областях было затруднительно. Ученые еще помнили, с какими трудностями столкнулась экспедиция в вице-королевство Перу. И все же: почему не маятник — сравнительно удобный и дешевый вариант? Комиссия указала, что единица измерения длины не может зависеть от единицы измерения времени и силы тяготения. Является ли время более «базовой» физической величиной, чем длина? Со временем эти противоречия оказались забыты: в последующих определениях метра, которые точнее соответствовали новым требованиям науки и техники, эти две величины оказались связаны воедино, о чем мы еще расскажем.

По мнению некоторых историков, причина заключалась в том, что один из членов комиссии, Борда, создал очень точный инструмент для измерения углов. Измерение меридиана в конечном счете доказало бы эффективность этого инструмента, и его можно было бы использовать для топографических и астрономических расчетов.

Выбор дуги меридиана

Так как измерить длину четверти меридиана от Северного полюса до экватора невозможно, была предпринята попытка измерить максимально возможную дугу меридиана по суше и экстраполировать результаты. Чтобы компенсировать воздействие рельефа и неидеальной формы Земли, следовало выбрать дугу меридиана вблизи 45-й параллели, такую, что ее концы находились бы на уровне моря, а в середине не было бы высоких гор. Таким образом, требовалось обойти два крупнейших горных хребта Европы — Альпы и Карпаты.

На иллюстрации изображена дуга меридиана, на основе которой был определен метр. Буквой Е обозначен экватор, В — Барселона, D — Дюнкерк.

Были рассмотрены три варианта: Амстердам — Марсель, Шербург — Мурсия и Дюнкерк — Барселона.

В итоге был выбран третий вариант, так как ранее, в 1739 году, на этом меридиане уже были проведены частичные измерения — так, было измерено расстояние от Дюнкерка до Перпиньяна. Возможно, на решение повлияло и то, что на этом меридиане находился Париж, и именно по этой причине от участия в проекте в 1791 году отказались англичане, которые ранее были готовы сотрудничать.

В апреле 1791 года комиссия Французской академии наук поручила реализацию проекта Жан-Батист-Жозефу Деламбру, Жану Доминику Кассини, Адриен-Мари Лежандру и Пьеру Мешену. Преданный королю Кассини отказался сотрудничать с революционным правительством, заключившим под стражу короля Людовика XVI. 15 февраля 1792 года Деламбр был единогласно избран членом Академии наук. В мае 1792 года, после того как Кассини окончательно отказался участвовать в проекте, Деламбру было поручено возглавить экспедицию на север, из Родеза в Дюнкерк, Мешену — экспедицию на юг, из Родеза в Барселону.

В январе 1806 года, уже после смерти Мешена, Деламбр закончил работу над трехтомным трудом, где были изложены все полученные им данные, условия наблюдений и расчеты, выполненные в ходе триангуляции. Труд носил название «Основы метрической десятичной системы, или Измерение дуги меридиана, заключенной между параллелями Дюнкерка и Барселоны. Выполнено в 1792 и следующих годах Мешеном и Деламбром».

Обложка книги Мешена и Деламбра.

Триангуляция — математическая основа измерения

Два столетия назад измерение дуги меридиана по суше было непростым делом. Измерения производились косвенно и по частям, для этого строилась сеть смежных треугольников, которая покрывала требуемый участок. После построения этой сети треугольников достаточно измерить длину одной стороны треугольника и величины двух прилежащих к ней углов, после чего посредством вычислений можно будет найти стороны всех треугольников в сети. Затем на основе построений в результате новых вычислений определяется длина дуги искомого меридиана. Этот метод называется триангуляцией и используется для измерения площади поверхностей неправильной формы, которые разбиваются на треугольники. Мы подробно описывали его в разделе «Измерение дуг меридианов посредством триангуляции» предыдущей главы.

Сначала отрезок, называемый основанием, измеряется по суше с максимально возможной точностью. Затем строится воображаемый треугольник. Двумя его вершинами будут концы основания, третьей — точка, как правило, находящаяся на возвышении. Она выбирается так, чтобы из каждой вершины треугольника были видны две другие и можно было измерить все три угла треугольника. Зная сторону и углы треугольника, можно вычислить две оставшиеся его стороны, которые, в свою очередь, станут основаниями двух других треугольников. Зная длины этих сторон и измерив углы новых треугольников, можно будет вычислить их стороны, которые станут основаниями новых треугольников. Таким образом, получается последовательность треугольников с известными сторонами. Вершины этих треугольников, называемые геодезическими пунктами, обычно располагаются на возвышениях (на горных вершинах, колокольнях и так далее).

Построенная таким образом последовательность треугольников обладает двумя недостатками: треугольники не располагаются в одной плоскости, а их стороны не сонаправлены с меридианом (мы уже отмечали, что сеть треугольников всего лишь покрывает рассматриваемую дугу меридиана). Следовательно, необходимо построить проекции двух видов, что несколько усложняет расчеты.

Во-первых, стороны треугольников необходимо спроецировать на общую плоскость отсчета. Для этого используется зенитный угол — угол между вертикалью в точке и стороной треугольника, проекцию которого необходимо построить (см. следующий рисунок).

Проекция сторон треугольника на общую горизонтальную плоскость.

Во-вторых, некоторые стороны необходимо спроецировать на меридиан так, чтобы в сумме они покрыли его полностью. Для этого используется так называемый азимутальный угол — между меридианом и стороной треугольника, проекцию которой мы хотим построить.

Проекция сторон, покрывающих меридиан.

Поделиться:
Популярные книги

Академия проклятий. Книги 1 - 7

Звездная Елена
Академия Проклятий
Фантастика:
фэнтези
8.98
рейтинг книги
Академия проклятий. Книги 1 - 7

Титан империи 5

Артемов Александр Александрович
5. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи 5

Я – Орк. Том 6

Лисицин Евгений
6. Я — Орк
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 6

Бальмануг. (Не) Любовница 2

Лашина Полина
4. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бальмануг. (Не) Любовница 2

Генерал Скала и ученица

Суббота Светлана
2. Генерал Скала и Лидия
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Генерал Скала и ученица

Газлайтер. Том 1

Володин Григорий
1. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 1

Сын Петра. Том 1. Бесенок

Ланцов Михаил Алексеевич
1. Сын Петра
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Сын Петра. Том 1. Бесенок

Восход. Солнцев. Книга IV

Скабер Артемий
4. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга IV

Ваше Сиятельство 2

Моури Эрли
2. Ваше Сиятельство
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Ваше Сиятельство 2

Газлайтер. Том 12

Володин Григорий Григорьевич
12. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 12

Книга пяти колец

Зайцев Константин
1. Книга пяти колец
Фантастика:
фэнтези
6.00
рейтинг книги
Книга пяти колец

Я – Орк. Том 3

Лисицин Евгений
3. Я — Орк
Фантастика:
юмористическое фэнтези
попаданцы
5.00
рейтинг книги
Я – Орк. Том 3

Авиатор: назад в СССР 14

Дорин Михаил
14. Покоряя небо
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 14

Провинциал. Книга 4

Лопарев Игорь Викторович
4. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 4