Чтение онлайн

на главную - закладки

Жанры

Как играть на российских биржах
Шрифт:
Учет возможности безрискового кредитования

В предыдущей статье был описан подход к формированию портфеля, предложенный Марковицем. Подход Марковица предполагает, что активы, рассматриваемые для инвестиций, являются рисковыми, т.е. каждый из рисковых активов дает неопределенный доход. Поскольку никакой из активов не имеет совершенно отрицательную корреляцию с любым другим активом, то все портфели также дают неопределенные доходы за период владения и, следовательно, являются рисковыми. Более того, инвестору не позволяется использовать оодлженные деньки вместе с начальным капиталом для покупки портфеля активов. Это означает, в модели Марковца инвестору не разрешается использовать финансовую поддержку или счет, находящийся у его брокера. В этой статье мы рассмотрим подход, который обобщает модель Марковица. Этот подход был предложен Джеймсом Тобином в работе «Национальная экономическая политика» (1966). Тобин показал, что для того, чтобы добиться сбалансированности в своих инвестиционных портфелях, инвесторы стремятся сочетать инвестиции с повышенной степенью риска с менее рискованными, которые в настоящее время принято называть безрисковыми активами. Итак, под безрисковым активом понимается (riskfree asset)

такой актив, будущая стоимость которого определена в любой момент времени. Если инвестор покупает безрисковый актив в начале инвестиционного периода, то он точно знает, каковым будет его доход в конце периода. К таким активам можно отнести казначейские ценные бумаги и государственные облигации со сроком погашения, совпадающим с периодом владения, банковский депозит и кредит, а также с некоторой долей условности корпоративные облигации. Чтобы ценная бумага действительно была безрисковой, по ней не должны осуществляться купонные выплаты в течение владения этой бумагой инвестором. Она должна обеспечить ему единоразовую выплату в последний момент владения. Любые промежуточные купонные выплаты подвергнут инвестора риску ставки реинвестирования, поскольку он не знает ставки, по которой могут быть реинвестированы купонные выплаты на остаток периода владения. С появлением на рынке безрискового актива инвестор получит возможность вкладывать часть своих денежных средств в этот актив, а остаток – в любой из рисковых портфелей, содержащихся в множестве достижимости Марковица. Появление новых возможностей существенно расширяет достижимое множество и, что важнее, изменяет расположение значительной части эффективного множества Марковица.

Безрисковый актив и эффективное множество

Можно показать, что любая комбинация из безрискового и рискованного актива будет лежать на прямой линии в координатах неопределенность-доходность. Точное положение точки будет зависеть от пропорции инвестиций в эти два актива. Рассмотрим сочетание безрискового актива и рискованного портфеля, достижимое множество в этом случае будет иметь вид, показанный на Hисунке 1. В частности, обратите внимание на то, что две границы являются прямыми линями, выходящими из точки, соответствующей доходности безрискового актива. Нижняя линия соединяет две точки, соответствующие безрисковому активу и низкорисковой акциям достижимого множества Марковица. Поэтому она определяет портфели, являющиеся комбинациями низкоризковой акции и безрискового актива.

Другая прямая линия, выходящая из точки, соответствующей доходности безрискового актива, представляет комбинации безрискового актива и определенного рискового портфеля из эффективного множества модели Марковица. Эта линия является касательной к данному эффективному множеству (в точке, обозначенной Т). Хотя и другие рискованные эффективные портфели из модели Марковица могут быть скомбинированы с безрисковым активом, портфель, находящийся в точке T заслуживает особого внимания. Почему? Потому что не существует портфеля, состоящего из рисковых ценных бумаг, который будучи соединен прямой линией с точной, соответствующей безрисковому активу, лежал бы левее и выше его. Другими словами, из всех линий, которые могут быть проведены из точки, соответствующей доходности безрискового актива, и соединяют эту точку с рискованным активом и рискованным портфелем, ни одна не имеет больший наклон, чем линия, идущая в точку Т. Это означает, что данная линия является эффективной границей, и портфели, находящиеся на этой линии имеют максимально возможную доходность и минимально возможный риск. Также стоит обратить внимание, что часть эффективного множества Марковица отсекается этой линией. В частности портфели, которые принадлежали эффективному множеству в модели Марковица и располагались между минимально рискованным портфелем, обозначенным через V, и портфелем T, с введением возможности инвестирования в безрисковые активы не являются эффективными. Теперь эффективное множество состоит из прямого и искривленного отрезка. Прямой отрезок идет из точки T и поэтому представляет портфели, составленные из различных комбинаций безрискового актива и портфеля Т. Искривленный отрезок расположенный выше и правее точки T представляет портфели из эффективного множества модели Марковица.

Влияние безрискового кредитования на выбор портфеля

На Рисунке показано, как будет вести себя инвестор при выборе эффективного портфеля, когда кроме рискованных активов имеется безрисковый актив. Если кривые безразличия инвестора выглядят аналогично показанным на Рисунке 2.1, то оптимальный портфель (O*) будет состоять из вложений части начального капитала в безрисковый актив и остальной части – в портфель T, так как кривые безразличия касаются эффективного множества между безрисковым активом и портфелем T.

Аналогично, если инвестор менее склонен избегать риска и его портфель характеризуется кривыми безразличия, сходными с изображениями на рисунке 2.2, то оптимальный портфель (O*) вообще не будет включать безрисковых активов, так как кривые безразличия касаются искривленной части эффективного множества в точках, лежащих выше и правее точки Т.

Рыночная модель

В предыдущих статьях были рассмотрены Модель Марковца и Модель Тобина, которые предполагают, что для решения задачи портфельного инвестирования необходимо оценить два наиболее значимых параметра ценной бумаги – её ожидаемую доходность и неопределенность (риск). После чего нужно оценить все коэффициенты ковариации (найти статистическую связь) между ценными бумагами. Используя такие оценки, инвестор может построить кривую эффективного множества Марковца, и затем для заданной безрисковой процентной ставки определить касательный портфель, найдя эффективное

множество по Тобину. Наконец, инвестор может произвести инвестицию в этот касательный портфель. Как оценить эти показатели с наименьшими трудозатратами? Наиболее простой способ состоит в применении так называемой рыночной модели, которая является частным случаем факторных (или индексных) моделях (factor тodels). В рыночной модели предполагается, что имеется только один фактор – доходность по индексу рынка. Итак, предположим, что доходность обыкновенной акции за данный период времени связана с доходностью рыночного индекса, например, индекса ММВБ. В этом случае с ростом рыночного индекса, вероятно, будет расти и цена акции, а с падением рыночного индекса, вероятно, будет падать и акция. Один из путей отражения данной зависимости носит название рыночная модель (тarket тodel):

ri = iI + iI * ri + iI

, где

ri – доходность ценной бумаги i за данный период;

rI – доходность на рыночный индекс I за этот же период;

iI – коэффициент смещения;

iI – коэффициент наклона;

iI – случайная погрешность. Предположив, что коэффициент наклона положителен, из приведенного уравнения можно заметить следующее: чем выше доходность на рыночный индекс, тем выше будет доходность ценной бумаги (заметим, что среднее значение случайной погрешности равняется нулю).

«Бета»-коэффициент

Наклон в рыночной модели ценной бумаги измеряет чувствительность её доходности к доходности на рыночный индекс. Коэффициент наклона рыночной модели принято называть «бета»-коэффициентом, он вычисляется следующим образом:

iI = iI/i2

, где

iI – ковариация между доходностью акции i и доходностью на рыночный индекс I;

i2 – дисперсия доходности на индекс. Акция, которая имеет доходность, являющуюся зеркальным отражением доходности на индекс, будет иметь «бета»-коэффициент, равный 1. То есть акции с «бета»-коэффициентом больше единицы обладают большей изменчивостью, чем рыночный индекс, и носят название «агрессивные акции» (a• ressive stocks). И наоборот, акции с «бета»-коэффициентом меньше единицы обладают меньшей изменчивостью, чем рыночный индекс, и называются «оборонительными» акциями (defensive stock).

Факторные модели

В факторных моделях предполагается, что доходность ценной бумаги реагирует на изменения различных факторов. В предыдущей статье был рассмотрен частный пример факторной модели – рыночная модель. Однако более точной оценки доходности, неопределенности и статистической связи ценных бумаг многофакторные модели более полезны. Данный факт можно объяснить тем, что на фактические доходности ценных бумаг могут быть чувствительны не только к изменению индекса рынка, но и к другим экономическим показателям. Факторные модели представляют собой попытку учесть основные экономические силы, систематически воздействующие на курсовую стоимость всех ценных бумаг. При построении факторной модели неявно предполагается, что доходности по двум ценным бумагам связаны между собой (т.е. изменяются согласованно) только за счет общей реакции на один или более факторов, определенных этой моделью. Считается, что любой аспект доходности ценной бумаги, не объясненный факторной моделью, является уникальным для данной конкретной ценной бумаги и, следовательно, не коррелирован с уникальными аспектами других ценных бумаг. В результате факторная модель является мощным средством управления портфелем инвестиций. С помощью факторной модели можно:

• Вычислить ожидаемые доходности, дисперсии и ковариации для каждой ценной бумаги.

• Характеризовать чувствительность портфеля к изменениям факторов.

На практике все инвесторы явно или неявно применяют факторные модели. Это связано с тем, что невозможно рассматривать взаимосвязь каждой ценной бумаги с каждой другой по отдельности, так как объем вычислений при расчете ковариаций ценных бумаг растет с ростом числа анализируемых ценных бумаг. Сложная картина дисперсий и ковариаций начинает пугать воображение в случае десятка ценных бумаг, не говоря уже о сотнях или тысячах. Даже огромных возможностей быстродействующих компьютеров становится недостаточно для построения эффективных множеств при большом числе ценных бумаг. Поэтому абстракция является существенным шагом при определении кривой эффективного множества Марковица, и факторные модели дают необходимый уровень абстрактности. Этот метод позволяет выделить в экономике важные факторы и оценить, насколько различные ценные бумаги и портфели чувствительны к изменениям этих факторов. Если принять, что доходности ценных бумаг подвержены влиянию одного или более факторов, то первоначальной целью анализа ценных бумаг является определение этих факторов и чувствительности доходностей ценных бумаг к их изменению. Формальное утверждение о существовании такой связи называется факторной моделью доходности ценных бумаг.

Общий вид факторной модели

Пусть задана система переменных r1, r2, …, rn, где ri – доходность по i– ой ценной бумаге в определенный момент времени. Представим исходную информацию в виде столбца R = (rit) размерности n. Предположим, что каждый элемент столбца R является результатом воздействия некоторого числа t гипотетических общих факторов и одного специфического (характерного) фактора. Тогда (rit) можно представить в виде следующего выражения:

Поделиться:
Популярные книги

Ученичество. Книга 2

Понарошку Евгений
2. Государственный маг
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ученичество. Книга 2

Император поневоле

Распопов Дмитрий Викторович
6. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Император поневоле

Лорд Системы 7

Токсик Саша
7. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 7

Целитель. Книга вторая

Первухин Андрей Евгеньевич
2. Целитель
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Целитель. Книга вторая

Темный Патриарх Светлого Рода 3

Лисицин Евгений
3. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 3

Случайная свадьба (+ Бонус)

Тоцка Тала
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Случайная свадьба (+ Бонус)

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II

Жребий некроманта. Надежда рода

Решетов Евгений Валерьевич
1. Жребий некроманта
Фантастика:
фэнтези
попаданцы
6.50
рейтинг книги
Жребий некроманта. Надежда рода

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия

Не грози Дубровскому! Том Х

Панарин Антон
10. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том Х

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Хочу тебя навсегда

Джокер Ольга
2. Люби меня
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Хочу тебя навсегда

СД. Том 15

Клеванский Кирилл Сергеевич
15. Сердце дракона
Фантастика:
героическая фантастика
боевая фантастика
6.14
рейтинг книги
СД. Том 15

Смерть может танцевать 3

Вальтер Макс
3. Безликий
Фантастика:
боевая фантастика
5.40
рейтинг книги
Смерть может танцевать 3