Как играть на российских биржах
Шрифт:
В предыдущей статье был описан подход к формированию портфеля, предложенный Марковицем. Подход Марковица предполагает, что активы, рассматриваемые для инвестиций, являются рисковыми, т.е. каждый из рисковых активов дает неопределенный доход. Поскольку никакой из активов не имеет совершенно отрицательную корреляцию с любым другим активом, то все портфели также дают неопределенные доходы за период владения и, следовательно, являются рисковыми. Более того, инвестору не позволяется использовать оодлженные деньки вместе с начальным капиталом для покупки портфеля активов. Это означает, в модели Марковца инвестору не разрешается использовать финансовую поддержку или счет, находящийся у его брокера. В этой статье мы рассмотрим подход, который обобщает модель Марковица. Этот подход был предложен Джеймсом Тобином в работе «Национальная экономическая политика» (1966). Тобин показал, что для того, чтобы добиться сбалансированности в своих инвестиционных портфелях, инвесторы стремятся сочетать инвестиции с повышенной степенью риска с менее рискованными, которые в настоящее время принято называть безрисковыми активами. Итак, под безрисковым активом понимается (riskfree asset)
Можно показать, что любая комбинация из безрискового и рискованного актива будет лежать на прямой линии в координатах неопределенность-доходность. Точное положение точки будет зависеть от пропорции инвестиций в эти два актива. Рассмотрим сочетание безрискового актива и рискованного портфеля, достижимое множество в этом случае будет иметь вид, показанный на Hисунке 1. В частности, обратите внимание на то, что две границы являются прямыми линями, выходящими из точки, соответствующей доходности безрискового актива. Нижняя линия соединяет две точки, соответствующие безрисковому активу и низкорисковой акциям достижимого множества Марковица. Поэтому она определяет портфели, являющиеся комбинациями низкоризковой акции и безрискового актива.
Другая прямая линия, выходящая из точки, соответствующей доходности безрискового актива, представляет комбинации безрискового актива и определенного рискового портфеля из эффективного множества модели Марковица. Эта линия является касательной к данному эффективному множеству (в точке, обозначенной Т). Хотя и другие рискованные эффективные портфели из модели Марковица могут быть скомбинированы с безрисковым активом, портфель, находящийся в точке T заслуживает особого внимания. Почему? Потому что не существует портфеля, состоящего из рисковых ценных бумаг, который будучи соединен прямой линией с точной, соответствующей безрисковому активу, лежал бы левее и выше его. Другими словами, из всех линий, которые могут быть проведены из точки, соответствующей доходности безрискового актива, и соединяют эту точку с рискованным активом и рискованным портфелем, ни одна не имеет больший наклон, чем линия, идущая в точку Т. Это означает, что данная линия является эффективной границей, и портфели, находящиеся на этой линии имеют максимально возможную доходность и минимально возможный риск. Также стоит обратить внимание, что часть эффективного множества Марковица отсекается этой линией. В частности портфели, которые принадлежали эффективному множеству в модели Марковица и располагались между минимально рискованным портфелем, обозначенным через V, и портфелем T, с введением возможности инвестирования в безрисковые активы не являются эффективными. Теперь эффективное множество состоит из прямого и искривленного отрезка. Прямой отрезок идет из точки T и поэтому представляет портфели, составленные из различных комбинаций безрискового актива и портфеля Т. Искривленный отрезок расположенный выше и правее точки T представляет портфели из эффективного множества модели Марковица.
На Рисунке показано, как будет вести себя инвестор при выборе эффективного портфеля, когда кроме рискованных активов имеется безрисковый актив. Если кривые безразличия инвестора выглядят аналогично показанным на Рисунке 2.1, то оптимальный портфель (O*) будет состоять из вложений части начального капитала в безрисковый актив и остальной части – в портфель T, так как кривые безразличия касаются эффективного множества между безрисковым активом и портфелем T.
Аналогично, если инвестор менее склонен избегать риска и его портфель характеризуется кривыми безразличия, сходными с изображениями на рисунке 2.2, то оптимальный портфель (O*) вообще не будет включать безрисковых активов, так как кривые безразличия касаются искривленной части эффективного множества в точках, лежащих выше и правее точки Т.
В предыдущих статьях были рассмотрены Модель Марковца и Модель Тобина, которые предполагают, что для решения задачи портфельного инвестирования необходимо оценить два наиболее значимых параметра ценной бумаги – её ожидаемую доходность и неопределенность (риск). После чего нужно оценить все коэффициенты ковариации (найти статистическую связь) между ценными бумагами. Используя такие оценки, инвестор может построить кривую эффективного множества Марковца, и затем для заданной безрисковой процентной ставки определить касательный портфель, найдя эффективное
ri = iI + iI * ri + iI
, где
ri – доходность ценной бумаги i за данный период;
rI – доходность на рыночный индекс I за этот же период;
iI – коэффициент смещения;
iI – коэффициент наклона;
iI – случайная погрешность. Предположив, что коэффициент наклона положителен, из приведенного уравнения можно заметить следующее: чем выше доходность на рыночный индекс, тем выше будет доходность ценной бумаги (заметим, что среднее значение случайной погрешности равняется нулю).
Наклон в рыночной модели ценной бумаги измеряет чувствительность её доходности к доходности на рыночный индекс. Коэффициент наклона рыночной модели принято называть «бета»-коэффициентом, он вычисляется следующим образом:
iI = iI/i2
, где
iI – ковариация между доходностью акции i и доходностью на рыночный индекс I;
i2 – дисперсия доходности на индекс. Акция, которая имеет доходность, являющуюся зеркальным отражением доходности на индекс, будет иметь «бета»-коэффициент, равный 1. То есть акции с «бета»-коэффициентом больше единицы обладают большей изменчивостью, чем рыночный индекс, и носят название «агрессивные акции» (a• ressive stocks). И наоборот, акции с «бета»-коэффициентом меньше единицы обладают меньшей изменчивостью, чем рыночный индекс, и называются «оборонительными» акциями (defensive stock).
В факторных моделях предполагается, что доходность ценной бумаги реагирует на изменения различных факторов. В предыдущей статье был рассмотрен частный пример факторной модели – рыночная модель. Однако более точной оценки доходности, неопределенности и статистической связи ценных бумаг многофакторные модели более полезны. Данный факт можно объяснить тем, что на фактические доходности ценных бумаг могут быть чувствительны не только к изменению индекса рынка, но и к другим экономическим показателям. Факторные модели представляют собой попытку учесть основные экономические силы, систематически воздействующие на курсовую стоимость всех ценных бумаг. При построении факторной модели неявно предполагается, что доходности по двум ценным бумагам связаны между собой (т.е. изменяются согласованно) только за счет общей реакции на один или более факторов, определенных этой моделью. Считается, что любой аспект доходности ценной бумаги, не объясненный факторной моделью, является уникальным для данной конкретной ценной бумаги и, следовательно, не коррелирован с уникальными аспектами других ценных бумаг. В результате факторная модель является мощным средством управления портфелем инвестиций. С помощью факторной модели можно:
• Вычислить ожидаемые доходности, дисперсии и ковариации для каждой ценной бумаги.
• Характеризовать чувствительность портфеля к изменениям факторов.
На практике все инвесторы явно или неявно применяют факторные модели. Это связано с тем, что невозможно рассматривать взаимосвязь каждой ценной бумаги с каждой другой по отдельности, так как объем вычислений при расчете ковариаций ценных бумаг растет с ростом числа анализируемых ценных бумаг. Сложная картина дисперсий и ковариаций начинает пугать воображение в случае десятка ценных бумаг, не говоря уже о сотнях или тысячах. Даже огромных возможностей быстродействующих компьютеров становится недостаточно для построения эффективных множеств при большом числе ценных бумаг. Поэтому абстракция является существенным шагом при определении кривой эффективного множества Марковица, и факторные модели дают необходимый уровень абстрактности. Этот метод позволяет выделить в экономике важные факторы и оценить, насколько различные ценные бумаги и портфели чувствительны к изменениям этих факторов. Если принять, что доходности ценных бумаг подвержены влиянию одного или более факторов, то первоначальной целью анализа ценных бумаг является определение этих факторов и чувствительности доходностей ценных бумаг к их изменению. Формальное утверждение о существовании такой связи называется факторной моделью доходности ценных бумаг.
Пусть задана система переменных r1, r2, …, rn, где ri – доходность по i– ой ценной бумаге в определенный момент времени. Представим исходную информацию в виде столбца R = (rit) размерности n. Предположим, что каждый элемент столбца R является результатом воздействия некоторого числа t гипотетических общих факторов и одного специфического (характерного) фактора. Тогда (rit) можно представить в виде следующего выражения: