Чтение онлайн

на главную - закладки

Жанры

Как не ошибаться. Сила математического мышления
Шрифт:

Глава третья

Поголовное ожирение

Комический актер Евгений Мирман часто рассказывает историю, имеющую прямое отношение к статистике. По его словам, он любит повторять на своих выступлениях одну фразу: «Я читал, что сто процентов американцев – азиаты». Какой-нибудь озадаченный зритель обязательно возразит: «Но Юджин, вы же не азиат». В ответе артиста и содержится вся соль шутки: «Но я читал, что я азиат!»

Я вспомнил эту реплику Мирмана, когда натолкнулся в журнале Obesity на статью, в заголовке которой был поставлен весьма неприятный вопрос: «Будут ли все американцы страдать избыточным весом и ожирением?» {27} Как будто одной постановки вопроса было недостаточно, в статье дается ответ: «Да – к 2048 году».

27

См. исследование, проведенное группой специалистов, возглавляемой Юфом Ванга: Youfa Wang et al. Will All Americans Become Overweight or Obese? Estimating the Progression and Cost of the US Obesity Epidemic // Obesity, 2008, Oct. 16, no. 10, p. 2323–2330.

Ровно

в 2048 году мне стукнет семьдесят семь, и хотелось бы верить, что в столь почтенном возрасте я все-таки останусь при своем весе и не буду страдать ожирением. Но я читал, что буду!

Статья в журнале Obesity вызвала широкие дискуссии в прессе. В новостях предупреждали о наступлении «ожирения как катастрофы современности» {28} . В Long Beach Press-Telegram была опубликована статья с простым заголовком: We’re Getting Fatter («Мы становимся все более толстыми») {29} . Результаты исследования, проведенного автором этой статьи, перекликались с последним проявлением лихорадочной, постоянно меняющейся озабоченности американцев по поводу морального статуса нашей страны. Еще до моего рождения парни отращивали длинные волосы, а значит, мы были обречены на то, что коммунисты одержат над нами верх. Когда я был ребенком, мы слишком много играли в аркадные игры [53] , что обрекало нас на проигрыш в конкурентной борьбе с трудолюбивыми японцами. Сейчас мы едим слишком много фастфуда, поэтому умрем слабыми и неспособными к самостоятельному передвижению, в окружении пустых пакетов от курятины, запихнутых под диваны, с которых мы уже давно не в состоянии подняться. В статье эта озабоченность была представлена в качестве научно доказанного факта.

28

abcnews.go.com/Health/Fitness/story?id=5499878&page=1.

29

Long Beach Press-Telegram, 2008, Aug. 17.

53

Аркадные игры (arcade games) – компьютерные игры с нарочно примитивным игровым процессом. Прим. ред.

Спешу вас обрадовать. Не все из нас в 2048 году будут страдать ожирением {30} . Почему? Потому что не все линии прямые.

Тем не менее, как мы узнали от Ньютона, каждая линия достаточно близка к прямой. Эта идея лежит в основе линейной регрессии – статистического метода, имеющего для социологии то же значение, что и отвертка при ремонте дома. Это инструмент, которым вы почти наверняка воспользуетесь, какая бы задача перед вами ни стояла. Каждый раз, когда вы читаете в газете, что: люди, у которых много двоюродных братьев и сестер, чувствуют себя более счастливыми; граждане стран, где шире представлена сеть экспресс-кафе «Бургер Кинг», больше придерживаются свободной морали; сокращение приема ниацина повышает риск дерматофитоза в два раза; каждые 10 тысяч долларов дохода на 3 % повышают вероятность, что вы проголосуете за республиканцев, – во всех этих случаях вы имеете дело с результатом, полученным методом линейной регрессии [54] .

30

Мои комментарии по поводу исследования Ванга в значительной мере совпадают с точкой зрения Карла Бялика, изложенной им в статье «Исследование ожирения выглядит жидковато», см.: Carl Bialik. Obesity Study Looks Thin // Wall Street Journal, 2008, Aug. 15. О статье я узнал уже после написания этой главы.

54

Более подробную информацию об этих исследованиях можно найти в статье, опубликованной в Journal of Stuff I Totally Made Up in Order to Illustrate My Point («Журнал, придуманный мною для освещения собственной точки зрения»).

Вот как это работает. Вы хотите установить взаимозависимость между двумя параметрами, скажем между стоимостью обучения в университете и средним баллом по отборочному тесту SAT принятых на учебу студентов. Возможно, вы считаете: чем выше средний балл SAT, тем дороже учебное заведение, – но посмотрите на данные, которые говорят, что это далеко не универсальный закон. В Университете Элона, расположенном на окраинах Берлингтона (штат Северная Каролина), средний совокупный результат по математике и английскому языку составляет 1217 баллов; при этом университет взимает плату за обучение в размере 20 441 доллара в год. Обучение в Колледже Гилфорда, расположенном рядом, в городе Гринсборо, обходится немного дороже – 23 420 долларов, но средний результат первокурсников по SAT составляет там всего 1131 балл.

Вместе с тем, если вы посмотрите на весь список учебных заведений Северной Каролины – тридцать один частный университет, данные об оплате за обучение и о среднем балле которых были представлены в 2007 году в «Сети ресурсов для построения карьеры штата Северная Каролина», – вы увидите четкую тенденцию {31} .

На представленном ниже рисунке каждая точка графика соответствует одному из колледжей. Вы видите те две точки, которые находятся в правом верхнем углу, с высоким средним баллом SAT и столь же высокой платой за обучение? Это Университет Уэйк Форест и Университет Дэвидсона. Одинокая точка в нижней части рисунка соответствует единственному частному учебному заведению в этом списке, плата за обучение в котором меньше 10 тысяч долларов, – Колледжу медицинских наук Кабаррус.

31

Эти цифры взяты с сайта North Carolina Career Resource Network (www.soicc.state.nc.us/soicc/planning/c2c.htm), который позже был закрыт.

Данный рисунок четко показывает, что в учебных заведениях с более высоким средним баллом SAT цена за обучение, как правило, выше. Но насколько выше? Именно здесь на сцену выходит линейная регрессия. Очевидно, что точки на рисунке не образуют прямую линию, но видно, что они находятся не так уж далеко от прямой. Пожалуй, можно было бы вручную нарисовать прямую линию, проходящую посередине этого облака точек. Линейная регрессия исключает угадывание и позволяет найти прямую линию, максимально приближенную ко всем точкам [55] . В случае университетов штата Северная Каролина эта прямая выглядит так, как на следующем рисунке.

55

В данном контексте «максимальная приближенность» определяется следующим образом. Если вы замените фактическую плату за обучение в каждом университете оценкой, которую подразумевает прямая, а затем вычислите разность между расчетной и фактической платой за обучение, после чего возведете каждое из этих чисел в квадрат и сложите все эти квадраты, то получите общий показатель того, насколько прямая не проходит по точкам. Надо выбрать прямую, у которой этот показатель минимален. Такое суммирование квадратов напоминает о Пифагоре; в действительности геометрия, лежащая в основе линейной регрессии, – не что иное, как теорема Пифагора, преобразованная и доработанная для решения задач с гораздо большей размерностью. Однако эта история требует больше алгебраических выкладок, чем я хотел бы здесь приводить. Более подробное описание соответствующих аспектов корреляции и тригонометрии можно найти в главе 15.

Коэффициент наклона изображенной на рисунке прямой равен 28. Это означает следующее: если плата за обучение зависела бы только от баллов SAT, которые задает прямая на графике, тогда на каждый балл SAT приходилось бы дополнительных 28 долларов платы за обучение. Если вам удалось бы поднять средний балл первокурсников на 50 пунктов, тогда вы могли бы назначить более высокую плату за обучение – на 1400 долларов. (Или, с точки зрения родителей, если ваш ребенок на 100 баллов улучшит свой результат отборочного теста, это обойдется вам в дополнительных 2800 долларов в год. Курс по подготовке к тесту оказался более дорогим, чем вы думали!)

Линейная регрессия представляет собой замечательный инструмент: гибкий, масштабируемый и легкий в применении (вы просто нажимаете соответствующую кнопку электронной таблицы). Этот инструмент можно применять к двум наборам данных с участием двух переменных, как в приведенном выше примере, но он работает не менее эффективно и в случае трех или даже тысячи переменных. Каждый раз, когда вам нужно понять, как одни переменные меняют другие переменные и в каком направлении, линейная регрессия – это первое, что следует использовать. Этот инструмент применим буквально к любому набору данных.

Однако в этом заключается не только сильная, но и слабая сторона линейной регрессии. Вы можете применить этот метод, не задумываясь, действительно ли феномен, который вы пытаетесь моделировать, близок к линейному. Но вы не должны так делать. Я сказал, что линейная регрессия подобна отвертке – что действительно так; однако в другом смысле она скорее напоминает циркулярную пилу. Если вы примените этот инструмент без тщательного анализа того, что вы делаете, результаты могут оказаться плачевными.

Возьмем в качестве примера ракету, которую мы с вами запустили в предыдущей главе. Возможно, вы не имеете никакого отношения к ее запуску. А может быть, напротив, представляете собой ту цель, на которую эта ракета направлена. В последнем случае вы особенно заинтересованы в как можно более точном анализе траектории движения ракеты.

Вы могли бы нанести на график положение ракеты по вертикали в пяти точках по времени. Такой график выглядит следующим образом.

<
Поделиться:
Популярные книги

Я еще не князь. Книга XIV

Дрейк Сириус
14. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я еще не князь. Книга XIV

LIVE-RPG. Эволюция 2

Кронос Александр
2. Эволюция. Live-RPG
Фантастика:
социально-философская фантастика
героическая фантастика
киберпанк
7.29
рейтинг книги
LIVE-RPG. Эволюция 2

Матабар

Клеванский Кирилл Сергеевич
1. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII

Безымянный раб [Другая редакция]

Зыков Виталий Валерьевич
1. Дорога домой
Фантастика:
боевая фантастика
9.41
рейтинг книги
Безымянный раб [Другая редакция]

Светлая ведьма для Темного ректора

Дари Адриана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Светлая ведьма для Темного ректора

ТОП сериал 1978

Арх Максим
12. Регрессор в СССР
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
ТОП сериал 1978

Сердце дракона. Том 18. Часть 2

Клеванский Кирилл Сергеевич
18. Сердце дракона
Фантастика:
героическая фантастика
боевая фантастика
6.40
рейтинг книги
Сердце дракона. Том 18. Часть 2

Рота Его Величества

Дроздов Анатолий Федорович
Новые герои
Фантастика:
боевая фантастика
8.55
рейтинг книги
Рота Его Величества

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Двойной запрет для миллиардера

Тоцка Тала
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Двойной запрет для миллиардера

Газлайтер. Том 12

Володин Григорий Григорьевич
12. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 12

Мятежник

Прокофьев Роман Юрьевич
4. Стеллар
Фантастика:
боевая фантастика
7.39
рейтинг книги
Мятежник

На границе империй. Том 10. Часть 2

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 10. Часть 2