Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews
Шрифт:
7. Проведение анализа стандартных или стьюдентизированных остатков на наличие выбросов (в первую очередь тех, которые влияют на текущий прогноз), теста Чоу на точность прогноза (см. алгоритм действий № 17 «Диагностика в EViews влияния стьюдентизированных остатков на уравнение регрессии для прогностической модели USDOLLAR = а x USDOLLAR(-1) + b x USDOLLAR(-2)» и алгоритм действий № 19 «Методика проведения теста Чоу на точность прогноза для прогностической модели USDOLLAR = а x USDOLLAR(-1) + b x USDOLLAR(-2)»).
8. Если мы получили стационарные остатки и автокорреляция в остатках не выявлена (в противном случае над уравнением регрессии придется снова
9. Если точность прогностической модели нас устроила (см. алгоритм действий № 11 «Как в EViews построить точечный прогноз»), то в этом случае мы проверяем остатки на нормальное распределение. А затем строим интервальные прогнозы (см. алгоритм действий № 12 «Как в EViews построить интервальные прогнозы»), проверяя уровень их надежности на соответствие нормальному распределению, на основе которого строятся доверительные интервалы.
10. Чтобы использовать прогнозы стационарной статистической модели в качестве инструмента торговой системы, необходимо на основе этой модели составить прогнозы по рекомендуемым курсам покупки и продажи валюты с односторонним ограничением риска на уровне 60–90 % надежности. При этом прогнозы по рекомендуемым курсам покупки и продажи валюты могут использоваться в качестве стоп-заявок (подробнее об этом читатель узнает в главе 7).
Таким образом, создавая уравнение авторегрессии со стационарной ARMA-структурой на основе логарифмического временного ряда, необходимо выполнить все действия, которые перечислены в алгоритме действий № 22. При необходимости этот перечень каждый исследователь может расширить, если сочтет необходимым исходя из тех или иных соображений.
Однако далее при составлении стационарной статистической модели мы остановимся лишь на наиболее важных моментах этой работы. Первым делом нам необходимо найти с помощью EViews коррелограмму логарифмического временного ряда. С этой целью нужно открыть ранее созданный файл USDOLLAR1 с логарифмическим временным рядом и воспользоваться алгоритмом действий № 5 «Как построить коррелограмму в EViews». В результате у нас получилась табл. 6.3 с коррелограммой логарифмического временного ряда, полученного от исходного временного ряда «Курс доллара за период с июня 1992 г. по июнь 2010 г.». В полученной коррелограмме можно увидеть, как меняются коэффициенты автокорреляции (Autocorrelation, или АС) и частной автокорреляции (Partial Correlation, или РАС) в зависимости от изменения величины лага.
Судя по табл. 6.3, уровень автокорреляции (АС) между исходными уровнями временного ряда US Dollar 1 постоянно убывает, начиная с первого лага. В свою очередь уровень частной корреляции (РАС) резко снижается уже после первого лага, а после второго лага осциллирующим образом стремится к нулю (фактически колеблется вокруг нуля). Если мы хотим построить модель авторегрессионного процесса AR(p), то для определения оптимального числа р мы должны использовать частную автокорреляционную функцию. При этом следует исходить из следующего критерия: оптимальное число р в уравнении авторегрессии должно быть меньше лага, в котором частная автокорреляционная функция начинает стремиться к нулю. Судя по коррелограмме, помещенной в табл. 6.3, коэффициент частной автокорреляции для лага в один месяц (или лага 1-го порядка) равен 0,967, а для лага в два месяца (или лага 2-го порядка) = 0,005. Причем начиная с
Yt =c + b1Yt-1 +et. (6.1)
В свою очередь при идентификации авторегрессионной модели со скользящей средней модели ARMA(p, q) в качестве р выбирается лаг, после которого начинает убывать частная автокорреляционная функция, а в качестве q выбирается лаг, после которого начинает убывать автокорреляционная функция. Исходя из табл. 6.3 можно легко прийти к выводу, что коэффициент автокорреляции начинает убывать уже с лага 2-го порядка. Аналогичный вывод можно сделать и относительно коэффициента частной автокорреляции. Поэтому для прогнозирования курса доллара с помощью модели авторегрессии со скользящим средним в остатках можно использовать модель ARMA(1, 1), которая примет следующий вид:
Однако попробуем обойтись меньшим числом параметров, а потому сначала будем использовать авторегрессионную модель AR(1) согласно формуле (6.1). После того как в эту формулу вместо Y будет вставлено логарифмированное значение курса USDollar, оно приобретет следующий вид:
log(USDollar) = с + а x log(USDollar(-l)) + е. (6.3)
Однако для ввода в EViews следует использовать эту формулу в понятном для программы виде:
log(USDollar) log(USDollar(-l)) с. (6.4)
При этом целесообразно использовать для создания переменных файл USDollar, т. е. файл с исходным временным рядом (с данными за период с июня 1992 г. по июнь 2010 г.), поскольку в этом случае мы сможем получить в EViews прогноз в исходном, а не в логарифмическом виде (рис. 6.4).
Таким образом, мы получили следующий вывод данных по итогам решения уравнения авторегрессии log(USDollar) = с + а x log(USDollar(-l)) (табл. 6.4). При этом нетрудно увидеть, что все коэффициенты в этом уравнении регрессии оказались статистически значимыми (поскольку Prob., т. е. уровень их значимости, оказался равен нулю). После замены букв найденными коэффициентами это уравнение в логарифмическом виде приобретет следующий вид:
log(USDollar) = 0,103059 + 0,969092 x log(USDollar(-l)). (6.5)
Однако интерпретация формулы (6.5) не столь очевидна, поскольку она относится к логарифмическому ряду, поэтому с помощью потенцирования этой формулы можно перейти от логарифмов к исходному временному ряду. Поскольку в EViews при логарифмировании исходного временнoго ряда используются натуральные логарифмы, в основании которых лежит е = 2,718281…, формулу (6.5) можно преобразовать следующим образом:
EXP(log(USDollar)) = EXP (0,103059) + (EXP 0,969092 x log(USDollar(-l))). (6.6)
В частности, новое значение свободного члена (константы) в формуле (6.6) легко найти в Excel с помощью функции ЕХР(0,103059) = 1,1085568. В результате исходная линейная функция с константой 6.5, решенная относительно логарифмического временнoго ряда, станет степенной функцией с константой, которую можно применять относительно исходного временнoго ряда: