Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews
Шрифт:
Мы уже проверяли остатки на стационарность (см. алгоритм действий № 9 «Как проверить в EViews остатки на стационарность модели»), В этом случае будем действовать аналогичным образом, однако вместо файла RESID откроем файл USDOLLAR, после чего воспользуемся опциями VIEW/UNIT ROOT TEST (посмотреть/ тест на единичный корень), в результате чего появится диалоговое мини-окно UNIT ROOT TEST (рис. 6.1). Его мы заполним следующим образом. Параметр TEST TYPE (тип теста) установим на опции AUGMENTED DICKEY-FULLER (расширенный тест Дикки — Фуллера), a TEST FOR UNIT ROOT IN (тест на единичный корень для…) следует установить на опции LEVEL (исходный уровень ряда),
После щелчка мышкой кнопки ОК в диалоговом мини-окне Unit Root test получим табл. 6.1 с результатами решения теста на стационарность. Однако полученный уровень значимости (Prob.*) одностороннего f-критерия (t-Statistic), который равен 0,6166, свидетельствует, что нулевая гипотеза о наличии единичного корня не опровергается, а следовательно, исходный временной ряд нестационарен.
Напомним, что альтернативная гипотеза об отсутствии единичного корня и стационарности исходного временного ряда может быть принята лишь при уровне значимости менее 0,05. В принципе, можно попробовать получить стационарный ряд, включив в тестовое уравнение (INCLUDE IN TEST EQUATION) вместо опции константа (INTERCEPT) другую опцию TREND AND INTERCEPT (тренд и константа) (см. рис. 6.1). Однако в результате у нас получился бы еще более высокий уровень значимости ^-критерия = 0,9033, который с еще большим уровнем надежности подтвердил бы нулевую гипотезу о наличии единичного корня и нестационарности временного ряда.
Чтобы получить стационарный ряд, попробуем взять логарифмы от исходного уровня временного ряда. С этой целью нужно открыть файл USDOLLAR и воспользоваться опциями PROC/GENERATE BY EQUATION (выполнить/создать с помощью уравнения), после чего на экране появится диалоговое мини-окно GENERATE SERIES BY EQUATION (создать временной ряд по уравнению) (рис. 6.2), которое мы должны заполнить таким образом: USDOLLAR1 = log(USDOLLAR). В результате у нас появится новый логарифмический временной ряд, который поместим в файле USDOLLAR1.
Следующей задачей будет тестирование логарифмического временного ряда на стационарность. С этой целью откроем файл USDOLLAR1 и воспользуемся опциями VIEW/UNIT ROOT TEST (посмотреть/тест на единичный корень). Далее будем действовать таким же образом, как и в алгоритме действий № 21. При этом параметр INCLUDE IN TEST EQUATION (включить в тестовое уравнение) установим на опции INTERCEPT (включить константу). В результате диалоговое мини-окно UNIT ROOT TEST приобретет следующий вид (рис. 6.3).
Нажав на кнопку ОК, получим следующий вывод итогов по результатам расширенного теста Дикки — Фуллера (табл. 6.2). В результате удается получить уровень значимости (Prob. *) одностороннего ^-критерия (t-Statistic), равный нулю. Таким образом, нулевая гипотеза о наличии единичного корня и нестационарности логарифмического временного ряда опровергается и принимается альтернативная гипотеза о его стационарности.
6.2. Построение модели авторегрессии со скользящей средней и стационарной ARMA-структурой
Нам удалось выяснить, что созданный логарифмический временной ряд стационарен. Однако нужно еще построить уравнение авторегрессии со стационарной ARMA-структурой, что очень важно с точки зрения получения устойчивых (к воздействию внешних шоков) коэффициентов регрессии и получения надежных прогнозов. Этой проблемой мы уже занимались (см. алгоритм действий № 13 «Тестирование стационарности авторегрессионного процесса, описываемого уравнением USDOLLAR = а x USDOLLAR(-l) + b x USDOLLAR(-2), путем нахождения корней характеристического уравнения»), но тогда нам не удалось получить уравнение авторегрессии со стационарной ARMA-структурой.
Мы уже довольно много времени уделили построению нестационарной прогностической модели USDOLLAR = а x USDOLLAR(-l) + b x USDOLLAR(-2). Поскольку при этом нам приходилось учиться, то все процедуры, необходимые для построения этой модели, вводились не сразу, а постепенно, чтобы облегчить их усвоение. Теперь перед нами стоит задача построить стационарную прогностическую модель. При этом мы будем пользоваться теми же процедурами, которые использовались при создании прогностической модели USDOLLAR = а x USDOLLAR(-l) + b x USDOLLAR(-2). Чтобы не останавливаться на уже пройденном, но вместе с тем более четко структурировать полученные ранее знания, перечислим основные статистические процедуры, которые необходимо использовать при построении любой авторегрессионной (AR) или авторегрессионной со скользящей средней (ARMA) прогностической модели (алгоритм действий № 22).
1. Построение коррелограммы в EViews с целью определения параметров р и q в модели ARMA(p, q). Коррелограмма поможет нам определить лаговые переменные в уравнении авторегрессии (см. алгоритм действий № 5 «Как построить коррелограмму в EViews»).
2. Решение уравнения регрессии и проверка значимости всех его параметров. Этот вопрос можно считать самым важным из всего нашего перечня (см. алгоритм действий № 3 «Как решить уравнение регрессии в Excel», алгоритм действий № 4 «Оценка статистической значимости уравнения регрессии и его коэффициентов» и алгоритм действий № 6 «Как решить уравнение регрессии в EViews»).
3. Тестирование AR- или ARMA-структуры уравнения на стационарность (см. алгоритм действий № 13 «Тестирование на стационарность AR-структуры уравнения USDOLLAR = а x USDOLLAR(-1) + b x USDOLLAR(-2) путем нахождения корней характеристического уравнения»). Тестирование исходного (а при необходимости и логарифмического) временного ряда на стационарность (см. алгоритм действий № 21 «Как провести тест на стационарность исходного уровня временно го ряда»),
4. Тестирование AR- или ARMA-структуры уравнения на импульсный ответ (см. алгоритм действий № 14 «Тестирование на импульсный ответ AR-структуры нестационарного процесса, описываемого уравнением USDOLLAR = а x USDOLLAR(-1) + b x USDOLLAR(-2)»).
5. Проверка остатков, полученных в результате решения уравнения регрессии, на наличие в них автокорреляции (см. алгоритм действий № 7 «Как выполняется LM-тест Бройша — Годфри в EViews»).
6. Проверка остатков на стационарность (см. алгоритм действий № 9 «Как в EViews проверить остатки на стационарность»),