Чтение онлайн

на главную - закладки

Жанры

Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews
Шрифт:

В результате мы получили табл. 6.13, в которой наряду с оценкой точности стационарной прогностической модели log(USDollar) = с + а x log(USDollar(-1)) + МА(1) поместили и оценку точности нестационарной статистической модели USDOLLAR = а x USDOLLAR(-l) + а x USDOLLAR(-2) за период с июня 1992 г. по июнь 2010 г.

О содержательной интерпретации параметров, представленных в табл. 6.13, мы уже говорили (см. алгоритм действий № 8 «Как оценить точность статистической модели в EViews»).

Нетрудно

заметить, что хотя в целом по уровню точности обе модели имеют довольно близкие оценки, тем не менее стационарная модель по ряду показателей уступает нестационарной модели. Так, довольно существенным кажется отклонение по величине средней ошибки по модулю (Mean Absolute Error) и по величине средней ошибки по модулю в процентах (Mean Absolute Percentage Error). Например, в целом за весь период средняя ошибка по модулю для стационарной модели оказалась на 2,45 процентного пункта выше, чем у нестационарной, а по величине средней ошибки по модулю в процентах — почти на 0,46 пункта.

Однако если посмотреть, как изменялась точность обеих статистических моделей в различные периоды времени, то начиная с 1999 г. стационарная модель дает более точные прогнозы. В частности, в период с января 1999 г. по июнь 2010 г. средняя точность стационарной модели оказалась выше точности нестационарной модели на 0,2 коп. по модулю (см. цифры, выделенные жирным шрифтом в табл. 6.14). А с января 2009 г. по июнь 2010 г. эта разница составила уже 8,7 коп.

Естественно, что и по величине средней точности прогноза (в % по модулю) стационарная модель с января 1999 г. также дает более точные прогнозы. В частности, в период с января 1999 г. по июнь 2010 г. средняя точность стационарной модели (в % по модулю) оказалась выше точности нестационарной модели на 0,08 процентного пункта (см. цифры, выделенные жирным шрифтом в табл. 6.15). В свою очередь с января 2009 г. по июнь 2010 г. эта разница составила уже более 0,26 процентного пункта. С учетом этого можно сделать вывод, что точность стационарной статистической модели за последние 11,5 лет оказалась выше, чем у нестационарной модели.

Воспользовавшись диалоговым мини-окном FORECAST, мы получили не только оценку точности прогноза для стационарной статистической модели log(USDollar) = с + а x log(USDollar(-1)) + МА(1), но и файл с точечными прогнозами USDOLLARF за период с июля 1992 г. по июль 2010 г. Открыв этот файл, мы выяснили, что точечный прогноз на июль 2010 г. оказался равен 31 руб. 19 коп., однако фактический курс доллара в июле 2010 г. был равен 30 руб. 19 коп. Следовательно, разница составила 1 руб. Посмотрим, попал ли фактический курс доллара в диапазон интервального прогноза?

Однако, прежде чем это сделать, проверим остатки, полученные по модели log(USDollar) = с + а x log(USDollar(-l)) + МА(1), на нормальное распределение и на стационарность (см. алгоритм действий № 9).

В первом случае откроем файл RESID и выберем опции VIEW (смотреть)/DESCRIPTIVE STATISTICS (описательная статистика)/ STATS TABLE (таблица со статистикой). При этом следует иметь в виду, что проверку на нормальное распределение остатков целесообразно проводить относительно логарифмических остатков, поскольку наша статистическая модель построена на логарифмическом временном ряде. Логарифмические остатки нетрудно найти, если при составлении прогнозов в диалоговом мини-окне FORECAST (прогноз) поставим «галочку» у файла LOG(USDOLLAR) (см. рис. 6.6). В результате мы получили табл. 6.16.

Судя по тому, что коэффициент асимметрии (Skewness) в табл. 6.16 положителен, можно прийти к выводу, что в распределении остатков, полученных по стационарной модели, наблюдается положительная асимметрия. Отсюда можно сделать вывод, что в динамике курса доллара к рублю чаще наблюдались резкие (вполне очевидно, что незначительные плавные колебания курса легко поддаются прогнозированию) подъемы, чем аналогичные падения. В свою очередь величина коэффициент эксцесса (Kurtosis) существенно выше 3, что свидетельствует об «островершинном» распределении остатков. По сути, это означает, что в этом распределении имеется ярко выраженное ядро плотности распределения, внутри которого диапазон колебаний величины остатков незначителен, и рассеянное «гало», где разброс колебаний величины остатков весьма значителен. Поскольку величина тестовой статистики Жарка — Бера составила 11990,08, а уровень ее значимости (Probability) оказался равен нулю, то, следовательно, мы вынуждены отвергнуть гипотезу о нормальном распределении остатков. Поскольку, как мы уже говорили нашим читателям, при уровне значимости критерия Жарка — Бера (Probability) меньше 0,05 нулевая гипотеза о нормальном распределении отклоняется.

В EViews есть возможность посмотреть в графическом виде оценку ядра плотности распределения с помощью опций DISTRIBUTION/ KERNEL DENSITY GRAPHS… (распределение/графики ядра плотности распределения). В появившемся мини-окне KERNEL DENSITY (ядро плотности распределения) установим опцию EPANECHNICOV. В результате получим рис. 6.11, наглядно показывающий «островершинный» характер распределения остатков с правосторонней асимметрией.

Для проверки остатков на стационарность воспользуемся расширенным тестом Дикки — Фуллера. Следует заметить, что проверку остатков на стационарность также целесообразно проводить относительно логарифмических остатков. После проведения тестирования мы убедились, что получили стационарные остатки (табл. 6.17). Поскольку статистика теста Дикки — Фуллера в этом случае составила -15,61466, а ее значимость (Probability) равна 0,0000, то нулевая гипотеза о том, что D(RESID) имеет единичный корень, отвергается. Следовательно, мы можем принять альтернативную гипотезу о стационарности полученных остатков.

Несмотря на то что остатки, полученные по стационарной модели, нельзя считать нормально распределенными, мы тем не менее уже знаем, что при больших выборках можно строить интервальные прогнозы исходя из их нормального распределения. Поэтому нашим следующим шагом будет расчет интервальных прогнозов не только на июль 2010 г. (курс доллара по этому месяцу не включен в базу данных), но и для всех наблюдений, на основе которых составлена статистическая модель log(USDollar) = с + а x log(USDollar(-1)) + МА(1). Это поможет нам проверить соответствие составленных интервальных прогнозов нормальному распределению, поскольку уровень надежности для интервальных прогнозов рассчитывался исходя из предположения о нормальном распределении остатков. Попутно заметим, что интервальные прогнозы будут построены начиная с июля 1992 г., поскольку первое наблюдение во временном ряде нам потребовалось для создания факторной переменной log(USDollar(-l).

После того как на основе алгоритма действий № 12 будут составлены соответствующие интервальные прогнозы, у нас появится возможность сопоставить заданные уровни надежности с фактической долей точных интервальных прогнозов. Судя по табл. 6.18, доля точных прогнозов оказалась незначительно ниже заданного уровня надежности при 99,9 %-ном и 99 %-ном уровнях надежности и практически ему равна при 95 %-ном (отклонение на -0,1 процентного пункта). Однако при 90 %-ном уровне надежности и более низких уровнях доля фактических прогнозов становится выше заданного уровня. Причем эта положительная разница растет при снижении уровня надежности, достигая своего максимума при 40 %-ном уровне надежности, когда она равна 36 процентным пунктам.

Однако если сравнить табл. 6.18, характеризующую точность интервальных прогнозов для стационарной модели log(USDollar) = с + а x log(USDollar(-l)) + МА(1), с табл. 4.8, которая характеризует их точность для нестационарной модели USDOLLAR= а х USDOLLAR(-l) + а x USDOLLAR(-2), то выяснится, что последняя модель с этой точки зрения несколько точнее.

Еще более серьезным минусом интервальных прогнозов, составленных по стационарной модели log(USDollar) = с + а x log(USDollar(-l)) + + МА(1) за весь период наблюдений (т. е. на основе данных с июля 1992 г. по июнь 2010 г.), являются слишком широкие интервалы прогнозов для большей части временного ряда, начиная с октября 1999 г. Так, при прогнозе на июль 1992 г. общий диапазон интервального прогноза (верхняя граница интервального прогноза минус нижняя граница интервального прогноза) при 95 %-ном уровне надежности составил лишь 4 коп. (табл. 6.19), в то время как фактическое значение курса доллара было равно лишь 16,12 коп. В свою очередь при прогнозе на июль 2010 г. общий диапазон интервального прогноза был равен 8 руб. 32,27 коп., а фактический курс доллара составил 30 руб. 18,69 коп. При этом в июле 1992 г. диапазон интервального прогноза составлял 25,77 % от фактического курса доллара, а в июле 2010 г. его доля в стоимости курса американской валюты равнялась 27,57 %, в то время как для нестационарной модели доля интервального прогноза для последнего наблюдения равнялась 10,62 %.

Поделиться:
Популярные книги

Темный Патриарх Светлого Рода 6

Лисицин Евгений
6. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 6

Полководец поневоле

Распопов Дмитрий Викторович
3. Фараон
Фантастика:
попаданцы
5.00
рейтинг книги
Полководец поневоле

"Колхоз: Назад в СССР". Компиляция. Книги 1-9

Барчук Павел
Колхоз!
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Колхоз: Назад в СССР. Компиляция. Книги 1-9

Курсант: назад в СССР

Дамиров Рафаэль
1. Курсант
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Курсант: назад в СССР

Измена. Ребёнок от бывшего мужа

Стар Дана
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ребёнок от бывшего мужа

Отмороженный 3.0

Гарцевич Евгений Александрович
3. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 3.0

Мимик!

Северный Лис
1. Сбой Системы!
Фантастика:
боевая фантастика
5.40
рейтинг книги
Мимик!

Целитель. Книга вторая

Первухин Андрей Евгеньевич
2. Целитель
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Целитель. Книга вторая

(Бес) Предел

Юнина Наталья
Любовные романы:
современные любовные романы
6.75
рейтинг книги
(Бес) Предел

Гром над Империей. Часть 2

Машуков Тимур
6. Гром над миром
Фантастика:
фэнтези
попаданцы
5.25
рейтинг книги
Гром над Империей. Часть 2

Дикая фиалка Юга

Шах Ольга
Фантастика:
фэнтези
5.00
рейтинг книги
Дикая фиалка Юга

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР

Возвращение

Жгулёв Пётр Николаевич
5. Real-Rpg
Фантастика:
боевая фантастика
рпг
альтернативная история
6.80
рейтинг книги
Возвращение

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант