Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews
Шрифт:
Тестирование на импульсный ответ ARMA-структуры модели USDOLLAR = с + а x USDOLLAR(-l) — b x USDOLLAR(-2) также показало ее стационарность. Рисунок 7.3 показывает, что величина импульсного ответа — по мере увеличения периодов тестирования на внешние шоки (инновационную неопределенность) — асимптотически стремится к нулю. Если проанализировать динамику накопленного импульсного ответа, то по мере увеличения периодов тестирования его величина стабилизируется на определенном уровне, что также свидетельствует о стационарности построенной статистической модели.
Убедившись
Полученная в результате составления прогноза средняя ошибка индивидуального прогнозного значения курса доллара оказалась равна 0,5075 руб. Ее мы использовали для составления рекомендуемых цен покупки и продажи, воспользовавшись алгоритмом действий № 24. При этом для расчета рекомендуемых цен покупки и продажи в качестве среднего значения для нормального распределения был взят фактический курс доллара от 26 июня 2010 г., т. е. его последнее значение перед началом инвестиционного периода, начавшегося с 29 июня и закончившегося 13 июля 2010 г. Рассчитанные нами рекомендуемые цены продажи и покупки доллара на рубли представлены в табл. 7.9.
Однако, прежде чем перейти к тестированию по рыночным данным эффективности рекомендуемых цен покупки и продажи, сначала нужно убедиться в их обоснованности. Нужно ответить на вопрос: какая доля цен покупок или продаж, рассчитанных по предложенной методике, в действительности оказалась ниже (или выше) фактического курса доллара в конце месяца?
Чтобы провести эту оценку, нужно рассчитать рекомендуемые курсы покупки и продажи доллара не только на период с 29 июня по 13 июля 2010 г., но и на весь период с октября 1998 г. по июнь 2010 г., а также отклонения рекомендуемых цен от заданного уровня надежности. В таблице 7.10 показан фактический риск того, что рекомендуемая цена продажи валюты, вычисленная с определенным уровнем надежности, в действительности может оказаться ниже курса доллара на конец инвестиционного периода (конец двухнедельного периода).
Судя по табл. 7.10, вероятность удачной сделки при продаже доллара по ценам, рассчитанным с 90 %-ным уровнем надежности и при более низких уровнях надежности, выше заданного уровня надежности. Причем при 60–70 %-ных уровнях надежности эта положительная разница достигает своего максимума — 15,8-15,9 процентного пункта. Правда, при продаже доллара с 95 %-ным и 99 %-ным уровнями надежности вероятность удачной сделки несколько ниже установленного уровня надежности.
В таблице 7.11 показан фактический риск того, что рекомендуемая цена покупки валюты, вычисленная с определенным уровнем надежности, в действительности может оказаться выше курса доллара на конец инвестиционного периода (конец двухнедельного периода). Судя по этой таблице, фактическая вероятность удачной сделки при покупке доллара с 99 %-ным уровнем надежности оказалась равна установленному уровню надежности. В то время как при более низких уровнях надежности фактическая вероятность удачной сделки оказалась выше заданного уровня. Причем при 70 %-ном уровне надежности эта положительная разница в пользу фактической вероятности удачной сделки достигает своего максимума — 17,3 процентного пункта.
Сравнив табл. 7.10 и 7.11, легко заметить, что вероятность
В таблице 7.12 представлены итоги валютных торгов за период с 29 июня по 13 июля 2010 г. для инвесторов, установивших цены покупки или продажи доллара с разными уровнями надежности. Судя по этой таблице, наиболее высокую курсовую доходность в размере 0,95 % по итогам двухнедельного инвестиционного периода получил инвестор, установивший цену продажи доллара с 70 %-ным уровнем надежности. На втором месте по этому показателю оказался инвестор, установивший цену продажи доллара с 60 %-ным уровнем надежности: доходность — 0,58 %. Третье место по доходности досталось инвесторам, установившим цену покупки доллара с 60 %-ным и 70 %-ным уровнями надежности, поскольку доходность у обоих оказалась равна 0,28 %. В то время как инвестор, придерживавшийся стратегии «купил и держи», в течение двух недель понес убытки в размере 0,62 %. При этом заметим, что фактическая вероятность удачной сделки для инвестора, придерживавшегося этой стратегии, по нашим подсчетам, за период с октября 1998 г. по июнь 2010 г. составила 52,0 % (из 306 сделок 152 были удачными, если вести подсчет доходности на конец каждого инвестиционного периода).
7.3. Использование в торговле модели для прогнозирования курса доллара к рублю с упреждением в одну неделю
Сейчас рассмотрим, насколько эффективна для использования в валютных торгах статистическая модель, по которой можно делать прогноз по курсу доллара к рублю с упреждением в одну неделю. При этом на полном изложении процедуры построения такой прогностической модели особо останавливаться не будем, а расскажем о наиболее важных особенностях этой модели.
На основе базы данных по курсу доллара, взятых с интервалом в одну неделю (на конец периода) с 1 октября 1998 г. по 20 июля 2010 г., нами была построена прогностическая модель, по которой можно делать прогнозы с упреждением в одну неделю. Вывод данных по итогам решения уравнения регрессии можно увидеть в табл. 7.13.
Подставив в USDOLLAR = с + а x USDOLLAR(-l) коэффициенты из табл. 7.13, получим следующую формулу:
USDOLLAR = 0,5970 + 0,9796 x USDOLLAR(-l), (7.4)
где USDOLLAR, USDOLLAR(-l) — переменные, обозначающие текущий курс доллара и курс доллара с лагом в одну неделю.
Интерпретация уравнения (7.4) следующая: в период с 1 октября 1998 г. по 20 июня 2010 г. рост на 1 руб. курса доллара с лагом в одну неделю в среднем приводил к повышению прогнозируемого курса доллара на 0,9796 руб. при исходном уровне курса доллара, равном 0,5970 руб.
Теперь оценим точность полученной статистической модели (см. алгоритм действий № 8 «Как оценить точность статистической модели в EViews»), поместив результаты этой оценки в табл. 7.14. Судя по этой таблице, среднее отклонение по модулю курса доллара от его прогноза за весь период составило 19,7 коп., а среднее отклонение по модулю в процентах равняется 0,72 %. В то время как у модели USDOLLAR = с + а x USDOLLAR(-l) + b x USDOLLAR(-2), делающей прогнозы с упреждением в две недели, среднее отклонение по модулю курса доллара от его прогноза оказалось равно 28,9 коп., а среднее отклонение по модулю в процентах — 1,07 % (см. табл. 7.7).