Чтение онлайн

на главную

Жанры

Как проектировать электронные схемы
Шрифт:

На схемах, приведенных на рис, 2.77а, б, показаны два упомянутых варианта применения реле с самоблокировкой. Кроме этого, представлена схема включения индикатора отсутствия напряжения сети (рис. 2.77в).

Индикаторный

светодиод подключен к батарейке или аккумулятору через нормально замкнутый контакт реле, катушка которого питается сетевым напряжением 220 В. Нажатие на кнопку (она должна быть рассчитана на напряжение сети) вызывает срабатывание реле, которое остается включенным после отпускания кнопки благодаря наличию параллельного ей замкнутого контакта. Одновременно разрывается цепь питания светодиода. Если напряжение сети отключается, реле возвращается в исходное состояние и светодиод зажигается. Когда напряжение сети восстанавливается, требуется повторное нажатие на кнопку, чтобы индикатор сбоя погас. При желании светодиод можно заменить зуммером.

РЕЗИСТОРНЫЕ МАТРИЦЫ

Резисторная матрица содержит несколько одинаковых резисторов. Любители используют эти компоненты сравнительно редко. Однако у таких матриц есть некоторые преимущества по сравнению с эквивалентным набором дискретных резисторов. В частности, они позволяют ускорить сборку схем. Резисторные матрицы удобно использовать в цифровых устройствах для создания делителей, обеспечивающих набор калиброванных напряжений, или для ограничения тока нескольких светодиодов, расположенных близко друг от друга. В аналоговых схемах матрицы могут применяться в сочетании с операционным усилителем, в частности в качестве резисторов в цепи отрицательной обратной связи. В этом случае гарантируется высокая стабильность коэффициента усиления и точность его задания, так как разброс параметров у резисторов матрицы, как правило, незначителен.

Существующие матрицы содержат четыре, семь или восемь резисторов, подключенных к выводам независимо или по схеме с общей точкой (рис. 2.78).

При наличии общего вывода он помечается маркировочной точкой на корпусе. Если есть сомнения по поводу типа матрицы или параметров резисторов, нетрудно проверить микросхему при помощи омметра.

НЕКОТОРЫЕ ОСОБЕННОСТИ ПРИМЕНЕНИЯ РЕЗИСТОРОВ

Прецизионные резисторы

дороги, не всегда можно найти нужный номинал, кроме того, они обычно продаются только в наборах.

Наиболее часто такие резисторы применяются для построения прецизионного делителя (например, при калибровке измерительного прибора) или если требуется набор идентичных резисторов, для которых абсолютная величина сопротивления не слишком важна. В последнем случае при помощи цифрового мультиметра можно провести сортировку обычных резисторов одного номинала и отобрать те из них, что имеют одинаковые сопротивления (например, 99,8 кОм при номинальном значении 100 кОм). Однако при этом стабильность параметров во времени, особенно в случае колебаний температуры, не гарантируется. Гарантию стабильности дает только использование прецизионных резисторов.

Параллельное включение резисторов

Определение результирующего сопротивления при параллельном включении нескольких резисторов выполняется с помощью хорошо известной расчетной формулы. Напомним, что полученная величина оказывается меньше, чем минимальное из использованных сопротивлений.

Рассеиваемые мощности

Мощность, рассеиваемая резистором, является важным показателем, о котором при разработке схемы иногда забывают. В этом случае первое включение схемы может вызвать неприятные последствия. Например, нетрудно рассчитать, что резистор 2,2 кОм, предназначенный для ограничения до 20 мА тока, потребляемого светодиодом, при напряжении источника питания 48 В рассеивает мощность около 1 Вт.

Если в схеме использован резистор с номинальной мощностью 0,5 Вт, через короткое время он выйдет из строя, а более мощный резистор может не поместиться на печатной плате.

При создании

схем с мощными резисторами следует быть особенно внимательным. Необходимо учитывать, что допустимые значения мощности, указанные производителями, обычно гарантируются для рабочей температуры 25 °C. Но при работе мощного устройства эта температура может быть существенно выше. Бывает, что резистор с номинальной рабочей мощностью 10 Вт при 25 °C перегревается при рассеивании всего лишь 2,5 Вт, если температура окружающей среды составляет 70 °C. В подобных случаях следует выбирать резисторы в специальном корпусе, оснащенном пластинами для охлаждения, размещать их на радиаторе и обеспечивать адекватную вентиляцию. Отметим, что выбор заведомо более мощного резистора не всегда позволяет избежать перегрева, так как рассеиваемая мощность при этом остается прежней.

Рабочие напряжения

Резистор, как и конденсатор, имеет максимально допустимое рабочее напряжение. Необходимость учитывать этот параметр ярко проявляется при работе со схемами, непосредственно подключенными к электрической сети. Примерами могут служить RC-цепи, служащие для подавления помех, или источники питания без трансформатора.

Классический резистор с номинальной мощностью 0,5 Вт обычно имеет допустимое рабочее напряжение порядка 200 В. В упомянутых выше устройствах при номинальном эффективном напряжении сети 230 В возможны режимы, при которых пиковое значение напряжения на резисторах может достигать 650 В. Даже если требованию по рассеиваемой мощности удовлетворяет один резистор, в данном случае необходимо использовать по меньшей мере три последовательно соединенных компонента, чтобы напряжение на каждом из них всегда оставалось в допустимых пределах. Из этого можно сделать вывод, что, если в схеме, подключенной к сети, есть несколько последовательных резисторов, их нельзя заменять одним резистором соответствующего номинала (рис. 2.79). В противном случае возникает опасность его разрушения.

Переменные цифровые резисторы

Сопряжение цифровой схемы с аналоговой нередко оказывается весьма сложной задачей, особенно если при разработке эти схемы не предназначались для работы друг с другом. Такая ситуация может возникнуть, например когда микропроцессор управляет регулируемым источником постоянного напряжения или генератором синусоидального сигнала. Обычно в системах автоматического регулирования функция считывания выходной величины выполняется проще, чем функция управления.

Часто регулирующие устройства должны имитировать плавно изменяющееся сопротивление, для чего используется цифровой (наборный) резистор, сопротивление которого варьируется в широких пределах с малым шагом в соответствии с заданным цифровым сигналом. Есть программируемые интегральные цифровые потенциометры, которые помогают в решении данной задачи. Однако такие микросхемы сравнительно дороги и не всегда обладают нужными параметрами, поэтому их часто заменяют дискретными компонентами.

Схема, приведенная на рис. 2.80, позволяет имитировать переменный резистор, характеристики которого можно выбирать, исходя из конкретных требований. Переключения выполняются с помощью контактов реле, что обеспечивает полную изоляцию цифровой части устройства от аналоговой.

Принцип работы схемы очень прост. В ней используется набор последовательно включенных резисторов, сопротивления которых при переходе от одного к другому изменяются путем умножения на 2, что соответствует изменению веса разрядов двоичного управляющего сигнала. Параллельно выводам каждого резистора подключен нормально замкнутый контакт реле, на обмотку которого подается цифровой сигнал соответствующего разряда. В состоянии покоя общее сопротивление равно нулю. Появление управляющего сигнала, соответствующего единице младшего разряда, отключает контакт, замыкающий первый резистор. В рассматриваемом примере на выходе появляется сопротивление 500 Ом. Включение второго реле, соответствующего следующему разряду двоичного сигнала (при отключении первого), дает на выходе сопротивление 1000 Ом.

Поделиться:
Популярные книги

Проводник

Кораблев Родион
2. Другая сторона
Фантастика:
боевая фантастика
рпг
7.41
рейтинг книги
Проводник

(Бес) Предел

Юнина Наталья
Любовные романы:
современные любовные романы
6.75
рейтинг книги
(Бес) Предел

Курсант: Назад в СССР 7

Дамиров Рафаэль
7. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 7

Кодекс Охотника. Книга IV

Винокуров Юрий
4. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга IV

Купец. Поморский авантюрист

Ланцов Михаил Алексеевич
7. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Купец. Поморский авантюрист

Его огонь горит для меня. Том 2

Муратова Ульяна
2. Мир Карастели
Фантастика:
юмористическая фантастика
5.40
рейтинг книги
Его огонь горит для меня. Том 2

Проклятый Лекарь IV

Скабер Артемий
4. Каратель
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Проклятый Лекарь IV

Последняя Арена 7

Греков Сергей
7. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 7

Академия

Сай Ярослав
2. Медорфенов
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Академия

Восход. Солнцев. Книга XI

Скабер Артемий
11. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга XI

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Последняя Арена 6

Греков Сергей
6. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 6

Беглец

Бубела Олег Николаевич
1. Совсем не герой
Фантастика:
фэнтези
попаданцы
8.94
рейтинг книги
Беглец

СД. Восемнадцатый том. Часть 1

Клеванский Кирилл Сергеевич
31. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.93
рейтинг книги
СД. Восемнадцатый том. Часть 1