Ключевые технологии и приемы использования щитовых проходческих комплексов при сооружении туннелей
Шрифт:
Рис. 4-2. Основная структура метода упругих шарнирных колец (продольный профиль туннеля)
Стыки тюбинга имеют некоторые характеристики сочленения, поэтому можно предположить, что не весь изгибающий момент передается стыками труб, а часть изгибающего момента передается на сцепленные соседние части тюбинга, как показано на рис. 4-2.
Этот метод целесообразно использовать для нахождения поперечных сил путем увеличения только изгибающего момента, который принимается
Параметры ? и ? изменяются в зависимости от типа тюбинга, конструктивной формы тюбингового соединения, способа сцепления колец и конструктивной формы; кроме того, на них особое влияние оказывают окружающие пласты. Теоретически метод расчета еще не установлен, но предполагается, что эти два параметра связаны друг с другом, то есть если значение ? близко к 1, то значение ? стремится к 0. При расчете поперечных сил с использованием модифицированного общего метода расчета, получение слишком малого значения ? приведет к завышению сил реакции основания на пласты. В то же время, поперечные силы кольца тюбинга недооцениваются, поэтому значения этих параметров должны быть тщательно продуманы. Согласно существующей практике, значения параметров ? и ? определяются на основе результатов испытаний и опыта.
В связи с этим в японском стандарте на тюбинги для щитового строительства предусмотрено, что ? обычно принимается равной 1, а ? равно 0. Для сравнения, в некоторых проектах ? = 0.8 и ? = 0.3. В таблице 4-3 приведены примеры комбинации ? и ?.
Таблица 4-3. Значение ? в сравнении со значением ?
Примечание: 1) Как правило, ? увеличивается по мере уменьшения ?; 2) Несмотря на отсутствие примеров применения на национальных железных дорогах, прогнозируется, что значения ? и ? будут находиться между значениями для тюбинга с плоским лотковым блоком и тюбинга из высокопрочного чугуна; 3) Является результатом испытания под нагрузкой, опубликованным в «Стандартных деталях тюбинга для щитового строительства» (дополненное издание 1982 года).
3) Метод анализа многошарнирного кольца
Этот метод расчета представляет собой аналитический метод, который рассматривает шарнир как шарнирную конструкцию. Многошарнирное кольцо само по себе является неустойчивой конструкцией, но считается, что его можно превратить в устойчивую конструкцию, опираясь на реакции большой площади грунта вокруг туннеля. Предполагается, что существует равномерная радиальная сила реакции основания, распределенная вдоль кольца.
Этот метод расчета опирается на силы реакции пласта вокруг туннеля, поэтому при выборе подходящего основания необходимо соблюдать осторожность. Кроме того, во время сборки тюбинга и сразу после выпуска хвостового щита, когда силы реакции основания еще не действуют в полной мере, необходимо использовать вспомогательные средства, позволяющие кольцу тюбинга быть самонесущими, или сделать соединение тюбинга достаточно жестким, чтобы поддерживать само кольцо. Видно, что этот метод анализа обычно используется в ситуациях, когда грунтовые условия хорошие.
4) Метод упругого шарнирного кольца
Поскольку кольцо щитовых туннелей состоит из нескольких сборных частей, эти части можно соединять в стыки различной формы, при необходимости скрепляя их болтами. Собранные соединения не могут иметь такую же жесткость, как монолитная железобетонная конструкция. На самом деле, стыки отдельных частей имеют не жесткий шарнир и не полный шарнир,
Рис. 4-3. Схематическая диаграмма аналитического метода решения значений внутренних сил для каждой секции
(5) Аналитический метод модели пружины-балки
Этот аналитический метод характеризуется моделированием кольца из тюбинга в виде балочной рамы (прямой или изогнутой балки), использованием вращающейся пружины и пружины сдвига для моделирования соединения тюбинга и конца кольца, соответственно, и использованием метода конечных элементов для анализа их упругих свойств для рамы и расчета поперечных сил. Этот аналитический метод является эффективным способом объяснения механизма несущей способности кольца из тюбинга.
При применении этого метода можно также рассчитать поперечные силы в случае кольцевых стыковых соединений тюбинга, двухкольцевых или трехкольцевых ступенчатых муфт и непосредственно найти поперечные силы между кольцами. Кроме того, когда постоянная величина пружины вращения соединения тюбинга равна 0, она такая же, как для многошарнирных колец; если она бесконечна, то такая же, как для равномерно жестких колец.
В последние годы многие ученые в Китае изучали проектирование тюбинга и придумали инновационные модели, чтобы компенсировать недостатки простых моделей.
(1) Трехмерная модель оболочки-пружины
Используется модель полной кольцевой футеровки, состоящая из полного кольца и двух полуколец, при этом среднее полное кольцо является целью исследования, а переднее и заднее полукольца – граничными условиями для среднего полного кольца, а также ступенчато соединенной силовой кольцевой структуры. Разработана модель конструкции под нагрузкой, а модель облицовки оболочки показана на рис. 4-4. Радиальное и тангенциальное сопротивление пласту моделируется пружинами. Учитывая, что сопротивление пласта грунта находится только под давлением, радиальная пружина напряжения на грунте автоматически отключается при ее вытягивании, а расположение блока пружин напряжения на земле показано на рис. 4-5.
Соединение тюбинга моделируется вращающейся пружиной, которая плотно размещена во всех узлах на торце соединения тюбинга. Пружина способна дополнить входной изгибающий момент, осевую силу и угол поворота кривой нелинейными параметрами. По сравнению с классической моделью пружинной балки, ее структурная форма и характер нагрузки в основном такие же, а основным прорывом является анализ распределения внутренних сил конструкции по амплитуде.
(2) Нагрузка – структурная модель оболочки-пружины – контактная модель
В модели «нагрузка – структурная модель оболочки-пружины – контактная модель» воздействие пласта на тюбинг достигается с помощью радиальных и тангенциальных фундаментных пружин. Эта модель учитывает эффект сжатия на стыках между тюбингом, перекрытие между тюбингом и болтовыми соединениями, радиальное и тангенциальное сопротивление пластов тюбинга, разницу между положительной и отрицательной изгибной жесткостью кольцевых соединений и угол вставки укупорочного блока. Он также обеспечивает условия для анализа продольной деформации, принимая во внимание механические механизмы растяжения болтов и сжатия водонепроницаемого материала в кольцевом пространстве во время продольной деформации. Этот метод может имитировать распространенный метод случайной сборки колец, как показано на рис. 4-6, и является более точным.