Когда ты была рыбкой, головастиком - я...
Шрифт:
Потеря одной квадратной единицы происходит, если взять квадрат со стороной 5. И это подводит нас к забавному правилу. Каждый второй элемент ряда Фибоначчи, если принять его за длину стороны квадрата, создает «дополнительную площадь» вдоль диагонали прямоугольника и зримую прибавкуодной квадратной единицы. Все остальные элементы ряда (если их также брать через один) дают перекрываниечастей прямоугольника и потерюодной квадратной единицы. Чем дальше по ряду мы продвигаемся, тем менее заметна площадь такого перекрывания. И соответственно, чем ниже номера членов ряда, тем перекрывание виднее. Можно даже построить своего рода парадокс с квадратом, имеющим сторону всего в две единицы, но в таком случае полученный из него прямоугольник 3 на 1 потребует столь явного перекрывания, что пропадет весь эффект от парадокса.
По
55
V. Schlegel, Zeitschrift fur Mathematik und Physik 24:123, 1879.
56
E.B. Escott, Open Court 21: 502, 1907.
57
W. Weaver, «Lewis Caroll and a Geometrical Paradox», American Mathematical Monthly 45:234,1938.
Бесконечное количество других вариантов получим, если положим в основу этого парадокса другие ряды Фибоначчи. Так, квадраты, построенные на основе ряда 2, 4, 6, 10, 16, 26…, дают прибавку или потерю в 4 квадратные единицы. Величину этой прибавки-потери легко можно вычислить: это разность между квадратом любого элемента последовательности и произведением соседних с ним элементов. Ряд 3, 4, 7, 11, 18… дает прибавку или потерю в 5 квадратных единиц. Т. де Молидар [58] в своей «Grande Encyclopedie des Jeux» [59] изображает квадрат, основанный на ряде 1, 4, 5, 9, 14… Длина стороны квадрата равна 9, a при превращении в прямоугольник он теряет и квадратных единиц. Ряд 2, 5, 7, 12, 19… также дает потери и прибавки, равные 11. Однако в обоих случаях перекрывание («добавочная площадь») вдоль диагонали прямоугольника достаточно велико, и его можно заметить. Пусть А, В и С — три последовательных члена какого-нибудь ряда Фибоначчи, а X — потеря или прибавка площади. Тогда получим две следующие формулы:
58
T. de Moulidars, Grande Encyclopedic des Jeux, p. 459 (Paris, 1888).
59
«Большая энциклопедия игр» (фр.).
А + В = С
В 2= АС ± X
Можно заменить X любой потерей или прибавкой, которую мы хотим получить, а вместо В подставить любую длину квадрата, которая нам нравится. Затем можно составить квадратные уравнения, а решив их, узнать два других элемента нашего ряда Фибоначчи, хотя, конечно, это не обязательно будут рациональные числа. Поэтому, к примеру, невозможно получить потери или прибавки в 2 или 3 квадратные единицы, деля квадрат на куски с рациональными длинами. Но если длины составят иррациональные числа, то, конечно, результата достичь удастся. Таким образом, ряд Фибоначчи 2, 22, 32, 52… даст прибавку или потерю, равную 2, а ряд 3, 23, 33, 53… даст прибавку или потерю в 3 квадратные единицы.
Доктор Матрикс великодушно сослался в своей лекции на главы 8 и 9 моей книги, вышедшей в мягкой обложке и называющейся «Математика, магия и мистика» (издательство «Dover») [60] . Эти главы посвящены всевозможным удивительным геометрическим исчезновениям, в том числе таинственной пропаже лиц и людей! Там описано, в частности, блистательное открытие мага-любителя Пола Карри: путем простой перестановки кусков некой фигуры получается фигура, казалось бы, той же площади, но с большой дырой внутри!
60
M. Gardner, Mathematics, Magic, and Mystery (New York: Dover, 1956).
Доктор завершил свой доклад кратким рассказом о числах трибоначчи.Ряд трибоначчи получают, всякий раз суммируя трипредыдущих члена: 1, 1, 2, 4, 7, 13, 24, 44, 81… В обобщенной последовательности Фибоначчи отношение соседних членов А и В (т. е. результат деления А на В) стремится к 0,618… — величине, обратной прославленному «золотому сечению». В последовательности трибоначчи такое отношение стремится к 0,543… Числа тетраначчиполучают путем суммирования четырех предшествующих элементов ряда. Разумеется, можно обобщить этот случай, приняв за nколичество суммируемых элементов. Тогда при стремлении nкбесконечности отношение соседних членов будет по мере увеличения их
Как я позже узнал от Дональда Кнута, известного ученого-компьютерщика из Стэнфордского университета, подобные ряды впервые были предложены Нараяной Пандитой в 1356 году, в главе 13 его замечательной работы, написанной на санскрите и озаглавленной «Ганита каумуди» («Услады лотосовых вычислений») [61] . Кнут обсуждает ее и дает ссылки на другие работы в четвертом томе своего классического труда «Искусство компьютерного программирования» [62] . Позже эту последовательность заново открыл» четырнадцатилетний Марк Фейнберг. Он написал об этом в «Fibonacci Quarterly» [63] . В 1967 году Марк, уже второкурсник Пенсильванского университета, разбился на мотоцикле.
61
N. Pandita, Ganita Kaumudi (Lotus Delight of Calculation), p. 1356:
62
D. Knuth, Art of Computer Programming, vol. 4 (Reading, MA: Addison-Wesley, 2006).
63
M. Feinberg, Fibonacci Quarterly, October 1963.
Доктор Матрикс, когда мы обедали с ним и с Дональдом Кнутом, сообщил нам еще об одной неправдоподобной диковинке, не связанной с числами Фибоначчи. Расположите десять цифр в алфавитномпорядке, и они образуют случайное и весьма скучное с виду число 8 549 176 320. Разделите его на 5. Получится 1 709 835 264 — еще одно десятизначное число, где представлены все десять цифр! Разделите и его на 5. Получится 341 967 052,8 — третье число, где каждая из десяти цифр встречается по одному разу [64] !
64
Разумеется, автор имеет в виду алфавит английского языка. Цифры выстраиваются по алфавиту согласно своим названиям: eight, five, four, nine, one, seven, six, three, two, zero. (Можно попробовать составить такое же число, руководствуясь более привычными нам названиями цифр: восемь, два, девять, ноль, один, пять, семь, три, четыре, шесть — 8 290 157 346. Но при делении его на 5 описанный эффект не наблюдается.)
Теперь разделим это число на 4. Окажется, что вы снова вернулись к самому первому — «алфавитному» — числу, только в нем теперь появилась десятичная запятая. Понимаете, отчего это произошло? Дважды разделив на 5 и один раз на 4, вы тем самым разделили первое число на 100 [65] .
Я послал эту диковинку, обнаруженную доктором Матриксом, своему другу Оуэну О'Ши, который родом из ирландского города Cobh (произносится «Коув»). Он — автор недавно вышедших «Магических чисел Профессора» [66] . В ответ Оуэн написал мне о множестве других удивительных свойств этого якобы «неинтересного» алфавитного числа. Например, оно раскладывается по степеням простых чисел как произведение 210, 33,5 и 61843. Это означает, что 8 549 176 320 без остатка делится на все числа от 1 до 9, исключая 7. Множитель 61 843 (тоже простое число) возникает довольно неожиданно.
65
Если обнаружите другие странные свойства числа 8 549 176 320, напишите мне о них через издательство «Hill and Wang». Вот еще одна особенность, на которую я набрел. Разделите наше алфавитное число на 2718 (первые цифры числа е), и вы получите число, начинающееся с 314 — первых цифр числа ! Я обнаружил также, что если 123 456 789 пять раз подряд разделить на 5, то каждый из полученных пяти результатов будет содержать все девять цифр с 1 до 9 включительно, а два результата будут содержать также и 0. (Прим. автора).
66
O. O'Shea, The Magic Numbers of the Professor (Washington, D.C.: Mathematical Association of America, 2007).
О'Ши двумя способами делит число 8 549 176 320 по разрядам, получив следующее уравнение:
854 + 917 + 632 + 0 = 8 · 5 · 49 + (1 · 7 · 63) + 2 + 0
Каждая часть равна 2403.
Затем О'Ши составил число, воспользовавшись обратным алфавитным порядком, и получил 0 236 719 458. Представив разряды этого числа в виде слагаемых: 0 + 2367 + 19 + 4 + 5 + 8, — он снова пришел к сумме 2403.
Два американских математика, Джеймс Смоук и Томас Дж. Ослер, в своей книге «Волшебный трюк Фибоначчи» [67] сообщают еще об одном удивительном фокусе. Возьмем дробь 100/89. В десятичном виде она равна 1,123 595 505 61… Первые пять цифр в ней — это первые пять чисел Фибоначчи [68] .
67
J. Smoak and T.J. Osier, «A Magic Trick from Fibonacci», College of Mathematics Journal 34: 58–60, January 2003.
68
Здесь и далее автор «по умолчанию» рассматривает простейший ряд Фибоначчи — 1, 1, 2, 3, 5, 8…