Чтение онлайн

на главную - закладки

Жанры

Когда ты была рыбкой, головастиком - я...
Шрифт:

1) m >= 2,

2) n >= m,

3) если m=2, n должно тоже равняться 2,

4) m /= 5.

Прямоугольник 4x7 — самый маленький дефицитный прямоугольник (не квадрат), который можно покрыть с помощью L-тримино. Вот еще одно упражнение: много ли у вас уйдет времени на то, чтобы покрыть такую фигуру с помощью тримино и двух элементов 2x3, если недостающая клетка у этой фигуры располагается в углу?

Кристофер Йенсен показал в своей неопубликованной статье, что если в углу любой доски убрать двеклетки, как показано на рис. 9. получившуюся доску нельзя будет покрыть с помощью тримино. Однако, если исключитьприведенные пять случаев, доску с длинами сторон 3m–1 и 3n+1 и с любыми двумя недостающими клетками окажется возможным покрыть при следующем необходимом и достаточном условии: либо если n=1, либо если m >= 3 и n >= 3.

Рис. 9.
Невозможность покрытия при отсутствии двухклеток в углу

Заключение

Кейт Джонс, основавшая и возглавляющая фирму «Kadon Enterprises», которая выпускает и продает разные симпатичные механические головоломки и другие забавные математические предметы, выпустила на рынок игру под названием «V-21» [78] . Буква V здесь — от «V-тримино», а 21 — число тримино в наборе, где кроме ярко раскрашенных фишек имеется также доска 8-го порядка, на которую их можно класть. Первое задание — положить мономино (квадрат 1-го порядка) в произвольное место доски, а затем покрыть оставшуюся площадь с помощью тримино (т. е. решить задачу для доски 8-го порядка). К игре прилагается сорокастраничное руководство. В нем напечатана короткая статья Нортона Старра «Дефицитная шахматная доска» и приводятся изображения прямоугольных досок и задачи к ним.

78

K. Jones, Vee-21 available at www.gamepuzzles.com/polycub2.htm#V21.

Завершим наш рассказ красивейшим симметричным покрытием стандартной шахматной доски (рис. 10).

Рис. 10. Покрытие квадрата 8-го порядка без использования элементов 2x3 и с пятью «самовоспроизводящимися» элементами rep-tile

А вот и ответ на задачу, которую я предложил вам на с. 197:

Глава12

Ay, мистер Херш, вы «здесь»?

Рубен Херш принадлежит к небольшой группе математиков, убежденных, что математика реальна лишь в контексте человеческой цивилизации. А я — бесстыжий платоник и предпочитаю иной язык мышления, предполагающий, что если из Вселенной исчезнут все разумные существа, то математические объекты и теоремы в каком-то смысле никуда не денутся — даже если не останется никого, кто смог бы писать или говорить о них. Гигантские простые числа продолжают быть простыми, хоть никто и не доказывал, что они являются таковыми. Как выразился однажды Бертран Рассел, даже в центре Солнца дважды два — четыре.

Более ранние мои замечания по этой теме см. под заголовком «В защиту платоновского реализма» — так называется глава у моей книги «Джинн из гиперпространства» (Амхерст, штат Нью-Йорк: «Prometheus Books», 2008).

Брайан Дэвис в своей статье «Дайте платонизму умереть» («IMS Newsletter» [79] , июнь 2007) определяет математический платонизм как убежденность в том, что математические объекты существуют «в некоем математическом царстве, за пределами времени и пространства». Но у меня (как, полагаю, и у большинства математических платоников) — иные убеждения. Аристотель, математический реалист, с радостью ухватился за платоновские универсалии трансцендентального царства («оранжевость», «коровность», «двоечность» и т. п.), приспособив их к объектам, существующим во времени и пространстве. Так, геометрическая форма вазы находится «здесь», в данной вазе, эта форма не плавает где-то возле платоновской «пещеры».

79

«Бюллетень

«Intelligent Manufacturing Systems»».

В качестве примера можно рассмотреть камешки. Пусть каждый из них — модель числа 1. В таком случае очевидно, что все теоремы арифметики можно доказать, перекладывая камешки. В принципе таким путем можно даже доказать, что произвольно выбранное число (не важно, насколько большое) является простым или составным.

Рубен Херш, мой давний оппонент, в своей статье «О платонизме» пишет:

На мой взгляд, платонизм (имея в виду обычный, бытовой платонизм типичного практикующего математика) справедливо признаёт существование математических фактов и объектов, не управляемых волей или прихотью конкретного математика, но обрушиваемых на него как объективные факты и сущности, о которых он должен узнавать и чье независимое существование и чьи качества он стремится обнаруживать и исследовать.

Что ж, профессор Херш, добро пожаловать в Платоновский клуб! Любой платоник всецело согласится с вашими словами. Но затем Херш делает невероятное заявление: «Ошибка платонизма — в неверной интерпретации этой объективной реальности, в выведении ее за рамки человеческой культуры и сознания».

Математические теоремы и объекты, продолжает Херш, подобно «многим другим реалиям культуры» являются «внешними и объективными с точки зрения любой отдельной личности(курсив Херша), но при этом внутренними, историчными и социально обусловленными с точки зрения данного социума или данной культуры в целом(по-прежнему курсив Херша)».

Получается, Херш все-таки не платоник! Неужели он вправду отрицает, что перекладывание камешков с целью доказать, скажем, что число 17 является простым, — это процесс, протекающий «здесь» независимо отданной культуры? Разумеется, манипулирование камешками является культурно обусловленным — в том тривиальном смысле, что вообще всякая человеческая деятельность так или иначе обусловлена культурой. Но не более того. Тот факт, что число 17 — простое, очевидным образом реализуется «здесь», в поведении камешков: по сути, аналогичным образом присутствует «здесь» эллиптическая орбита Марса или спиральная форма нашей галактики.

Херш буквально помешан на втискивании математики в социальность; в своей книге «Что же такое математика?» («Oxford University Press», 1997) пишет даже (крепитесь!), что 8+5 не обязательно равняется 13, ибо у отдельных небоскребов нет тринадцатого этажа. Стало быть, если вы доедете на лифте до восьмого этажа, а потом подниметесь еще на пять этажей, вы окажетесь на четырнадцатом этаже. Вероятно, Херш предполагает тем самым, что в субкультуре некоторых высотных зданий законы арифметики постоянно нарушаются?

Надо ли мне отмечать здесь, что с тех пор, как Декарт арифметизировал геометрию, ее модели тоже в принципе возможно строить с помощью камешков? И в самом деле, Вселенная заполнена моделями почти всех математических областей, объектов и теорий. Любой тополог сумеет доказать, построив грубую модель из конверта и затем разрезав ее пополам, что рассечение бутылки Клейна на две равные части даст две зеркальные ленты Мёбиуса [80] .

Для комплексных чисел и производных функций, возможно, не существует материальных моделей, однако и эти объекты вкраплениями испещряют Вселенную. Ньютон и Лейбниц, если выражаться обиходным языком, изобрели дифференциальное и интегральное исчисление, но в более глубинном смысле они открылизаконы, согласно которым живет Вселенная. Множество Мандельброта не находится вне пространства и времени [81] . Оно существует на компьютерных экранах. Неужели антиреалисты считают, что математик, занимающийся свойствами Мандельбротова множества, на самом деле изучает структуры внутри собственного мозга, так как его глаза и мозг воспринимают экран, или что он исследует часть человеческой цивилизации и культуры, к которой он принадлежит, — потому что именно эта цивилизация создала его компьютер?

80

Инструкции, объясняющие, как сделать бутылку Клейна из конверта, см. в главе 2 моей книги Sixth Book of Mathematical Games from Scientific American (New York: W. H. Freeman, 1971).

81

Множество точек на комплексной плоскости, обладающих определенными свойствами. Понятие введено французским математиком Бенуа Мандельбротом (р. 1924). основателем фрактальной геометрии.

Поделиться:
Популярные книги

Леди Малиновой пустоши

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Леди Малиновой пустоши

Ст. сержант. Назад в СССР. Книга 5

Гаусс Максим
5. Второй шанс
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ст. сержант. Назад в СССР. Книга 5

Империя на краю

Тамбовский Сергей
1. Империя у края
Фантастика:
альтернативная история
5.00
рейтинг книги
Империя на краю

На Ларэде

Кронос Александр
3. Лэрн
Фантастика:
фэнтези
героическая фантастика
стимпанк
5.00
рейтинг книги
На Ларэде

Последняя Арена 8

Греков Сергей
8. Последняя Арена
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 8

Три `Д` для миллиардера. Свадебный салон

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
7.14
рейтинг книги
Три `Д` для миллиардера. Свадебный салон

Кровавые обещания

Мид Райчел
4. Академия вампиров
Фантастика:
ужасы и мистика
9.47
рейтинг книги
Кровавые обещания

Возвращение Безумного Бога

Тесленок Кирилл Геннадьевич
1. Возвращение Безумного Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Возвращение Безумного Бога

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

Последняя Арена 5

Греков Сергей
5. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 5

Аватар

Жгулёв Пётр Николаевич
6. Real-Rpg
Фантастика:
боевая фантастика
5.33
рейтинг книги
Аватар

Отмороженный 11.0

Гарцевич Евгений Александрович
11. Отмороженный
Фантастика:
боевая фантастика
рпг
попаданцы
фантастика: прочее
фэнтези
5.00
рейтинг книги
Отмороженный 11.0

Ваше Сиятельство 2

Моури Эрли
2. Ваше Сиятельство
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Ваше Сиятельство 2

Академия

Кондакова Анна
2. Клан Волка
Фантастика:
боевая фантастика
5.40
рейтинг книги
Академия