Компания для людей. Как сохранить душу бизнеса в эпоху тотальной цифровизации
Шрифт:
Близорукость, вызванная данными
Как говорил Марк Твен, существует ложь, наглая ложь и статистика [10] . Возможно, в этом утверждении есть забавное преувеличение для достижения большего эффекта. Но организации допускают серьезную ошибку, чрезмерно увлекаясь цифрами. И некоторые компании уже поняли это на собственном горьком опыте.
В 2012 г. Adobe отказалась от ежегодных отчетов о результатах работы персонала. По сути, компания пользовалась специальными формами с целью сбора статистических данных для оценки достижений и улучшений по массе различных параметров. Старший вице-президент Adobe по кадрам и офисам Донна Моррис сравнила сбор этой отчетности с ежегодными посещениями стоматолога. Вместо отчетов компания внедрила менее формальные, основанные на межличностном общении способы диагностики, а именно –
10
Mark Twain, Chapters from My Autobiography (n. p.: CreateSpace, 2017), 122.
11
Jack Makhlouf, «Your Annual Performance Reviews Are Hurting You (Just Ask Adobe),» ELM Learning, 21.09.2016, https://elmlearning.com/annual-performance-reviews/.
Боб Низ, автор статьи «Как избыток данных снижает продуктивность и качество принятия решений» (How Too Much Data Can Hurt Out Productivity and Decision-Making), вышедшей в Fast Company, пишет: «Глубокое погружение в данные о том, кто покупает ваш виджет, бессмысленно, если не приводит к тому, чтобы ваши продавцы фокусировались на правильной аудитории и не тратили время на тех, кто никогда ничего у вас не купит» [12] . Низ отмечает, что люди непредсказуемы. И то, что вы собрали кучу классных данных по конкретной выборке, вовсе не означает, что вам удастся ими воспользоваться. Вы можете установить, что данная аудитория любит синий цвет. При этом, если вы начнете использовать синий в оформлении упаковки, это может и отпугнуть потребителей. Почему? Просто потому, что люди не машины. Их поведение спонтанно, противоречиво и порой не укладывается в схемы.
12
Bob Nease, «How Too Much Data Can Hurt Our Productivity and DecisionMaking,» Fast Company, 16.06.2016, https://www.fastcompany.com/3060945/how-too-much-data-can-hurt-our-productivity-and-decision-making.
В 2016 г. McKinsey&Company провели опрос топ-менеджеров ведущих компаний на тему использования больших данных и аналитики. Один из респондентов – директор по управлению рисками American Express Аш Гупта – дал очень интересный ответ: «В первую очередь нам пришлось поработать над повышением качества данных. Данных у нас очень много, и порой мы не пользовались ими и не задумывались об их качестве, как должны бы» [13] .
Итак, о чем нас предупреждают эти примеры?
13
«How Companies Are Using Big Data and Analytics,» McKinsey & Company, 01.04.2016, https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/how-companies-are-using-big-data-and-analytics.
Взаимодействие, выстроенное на основе цифр, может быть намного менее эффективным, чем взаимодействие, в центре которого человек.
Люди не всегда поступают так, как предсказывают результаты анализа данных.
Качество данных бывает разное. И если оно невысоко (либо вы в нем не уверены), ваши решения будут выстроены на очень слабом основании.
Вероятнее всего, мы все чаще будем иметь дело с данными. Поэтому чрезвычайно важно постоянно напоминать себе об обратной стороне использования данных. Есть несколько причин, по которым данные продолжат завоевывать мир.
Доступность. Сейчас данные можно получить в режиме реального времени и в более детализированном и унифицированном виде, чем когда-либо прежде. Чем проще достать информацию, например, через демографические профили пользователей сайтов или списки друзей и подписчиков в соцсетях, тем вероятнее компании захотят ею воспользоваться для получения прибыли.
Удобство хранения и использования. Сейчас можно отследить и записать, что делает на сайте каждый посетитель в каждый момент времени, а затем связать эту информацию с другими данными об этом пользователе. Невысокие затраты на хранение при огромных возможностях разных видов вычислений обеспечивают компаниям способы зарабатывать на этих данных и черпать в них новые идеи.
Инструмент для руководителей. Практически в каждой компании имеется набор метрик, наподобие терминалов Bloomberg, для руководителей разных уровней. Данные – это хребет, на котором держится бизнес и который влияет на все важные решения и заявления. Почитание цифр руководством ведет к тому, что все уровни организации принимают ту же модель поведения.
Эпоха искусственного интеллекта. Подобно тому как человек учится на своем опыте, все более мощные компьютеры производят огромные массивы данных, учатся в процессе их обработки и становятся все умнее. Заложенные в программу алгоритмы предлагают решения, основанные на анализе данных и позволяющие получить прибыль. И компании при принятии решений все чаще полагаются на компьютерные алгоритмы, а не на человеческий мозг.
За годы работы я понял, что наилучший способ постигнуть смыслы, стоящие за цифрами, и извлечь прорывные идеи из данных – это придерживаться принципа, который я назвал «принцип шести “П”»: перевести, пригласить, провести параллель, помечтать, повторить, поискать в прошлом.
ПЕРЕВЕСТИ С ЯЗЫКА ДАННЫХ. Не останавливайтесь на тех фактах и цифрах, которые лежат на поверхности. Иногда, конечно, они являются именно тем, чем кажутся. Но порой могут загнать в ловушку. Поэтому, особенно если имеете дело с неоднозначными данными, посмотрите на них с разных сторон. Выдвигайте гипотезы, ищите закономерности и аномалии, предложите альтернативные трактовки полученной информации. На этом шаге вы переводите язык цифр на язык смыслов и можете понять, какая история кроется за данными.
14
В оригинале – метод шести I (interpret – переводить, трактовать, involve – вовлекать, interconnect – устанавливать взаимосвязь, imagine – воображать, iterate – предпринимать еще одну попытку, проводить итерацию, investigate – расследовать, выяснять). – Прим. пер.
ПРИГЛАСИТЬ РАЗНЫХ УЧАСТНИКОВ. Аналитики, конечно, ключевые участники, но расширьте рабочую группу, занимающуюся анализом данных. Вовлекая специалистов с различными навыками и точками зрения, вы, скорее всего, получите расширенную трактовку данных. Например, аналитики скажут: «Количество подписчиков нашего сайта выросло за месяц на 15 %». Маркетологи добавят: «Возможно, причина в невероятно успешной программе выдачи лицензии на наш бренд другой компании, которая началась в прошлом месяце». Специалисты отдела кадров отметят: «Каждый раз с ростом числа подписчиков сайта мы начинаем получать больше резюме от соискателей». О важности изучения мнений разных сторон говорят примеры таких скандальных реклам, как фото модели в черном свитере Gucci, напоминающем пародию на внешность афроамериканцев, или ролик Pepsi с Кендалл Дженнер, нацеленный на непонятно какую аудиторию [15] .
15
Thomas Hobbs, «Pepsi’s Ad Failure Shows the Importance of Diversity and Market Research,» Marketing Week, 07.04.2017, https://www.marketingweek.com/2017/04/07/pepsi-scandal-prove-lack-diversity-house-work-flawed/?ct_5ce866d3b5495=5ce866d3b5496.
ПРОВЕСТИ ПАРАЛЛЕЛЬ С ДРУГИМИ СОБЫТИЯМИ И ЗАКОНОМЕРНОСТЯМИ ИНОГО УРОВНЯ. Связаны ли как-то данные с новыми зарождающимися тенденциями, серьезно влияющими на вашу отрасль? Имеет ли отношение найденная вами информация к новому продукту, который выводит на рынок ваш конкурент? Проведение таких параллелей помогает вам сделать еще один шаг вперед на пути к пониманию данных. И определить, например, будут ли цифры, которые вы видите, иметь какое-либо значение в долгосрочной перспективе или они важны только сейчас. Свидетельствуют ли они о завершении или начале тренда.
ПОМЕЧТАТЬ, ЧТОБЫ НАЙТИ РЕШЕНИЕ. Очень часто мы позволяем цифрам ограничить полет нашей мысли: «Мы не можем выходить на новый рынок, как собирались, потому что, по отчетам, наблюдается снижение продаж соответствующих товаров». Не позволяйте данным вас остановить. Вместо этого ищите решения. Если цифры показывают, что сейчас такой продукт плохо торгуется на выбранном вами потенциальном рынке, не говорит ли это также и о том, что конкуренция скоро снизится и рынок по-прежнему останется привлекательным?