Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Создание библиотек с помощью КОМПАС-Макро

КОМПАС-Макро – это интегрированная в систему КОМПАС-3D среда разработки конструкторских приложений на основе языка программирования Python. Почему за основу взят именно Python? Во-первых, Python распространяется бесплатно и, как следствие, нет никаких ограничений на использование программ, написанных на нем. И, во-вторых, на сегодняшний день Python – один из самых простых и понятных языков программирования. И при всей своей простоте он мало в чем уступает таким китам объектно-ориентированного программирования, как C++ или Delphi.

По сути, КОМПАС-Макро является обычной библиотекой, подключаемой к КОМПАС, только с очень большими возможностями. После установки среды Python

и КОМПАС-Макро (их дистрибутивы входят в установочный комплект системы КОМПАС) библиотеку можно подключить к системе как обычный прикладной модуль – с помощью менеджера библиотек.

При создании приложений в КОМПАС-Макро можно пользоваться как функциями КОМПАС-Мастер (о них будет рассказано ниже), так и специальными функциями макросреды, облегчающими разработку прикладных библиотек. Среди специальных функций КОМПАС-Макро следует отметить возможности простановки угловых, линейных и радиальных размеров, функцию вставки в документ фрагмента, рисования линии-выноски и пр. Синтаксис перечисленных методов значительно проще их аналогов, реализованных в КОМПАС-Мастер (например, вместо вызова одной функции создания линейного размера, при работе с API-функциями в КОМПАС-Мастер приходится объявлять и инициализировать три интерфейса).

Чтобы использовать библиотеку КОМПАС-Макро, нужно обладать знаниями лексики и приемов работы с языком Python.

Если же вы не понаслышке знакомы с основами объектно-ориентированного программирования и у вас есть желание разрабатывать настоящие библиотеки на базе КОМПАС-3D, то для вас есть один путь – использование инструментальных средств разработки прикладных библиотек КОМПАС-Мастер.

КОМПАС-Мастер

Во многих случаях одних средств параметризации для автоматизации тех или иных действий в процессе проектирования недостаточно, и новые проектируемые 3D-модели или чертежи хоть и схожи с эталоном, но имеют различия, не позволяющие использовать параметрические зависимости при построении. Например, когда какие-либо значения принимаются конструктивно или выбираются из справочников в зависимости от третьих величин. Иногда расчетные параметры модели изменяются дискретно (например, модуль зубчатых колес всегда согласовывается со стандартными значениями и не может принимать значений, отличных от приведенных в ГОСТ) или не связаны аналитически с любым другим параметром. Для определения таких параметров в библиотеку необходимо заложить достаточно сложный и гибкий алгоритм. Он может включать расчеты любой сложности, условия определения параметров, различные ограничения, связь с файлами данных и т. п. В таком случае никак не обойтись без программирования.

Для этой цели программный пакет КОМПАС-3D располагает очень мощными инструментальными средствами разработки дополнительных модулей (прикладных 500 библиотек) – КОМПАС-Мастер, которые позволяют использовать всю силу современного объектно-ориентированного программирования совместно с функциями КОМПАС для создания очень гибких и функциональных приложений. Хорошо владея одним из языков программирования и основами трехмерного моделирования в КОМПАС-3D, можно научиться самостоятельно разрабатывать различные по структуре программные модули для решения узко-профильных задач конструирования. Такие приложения смогут производить сложные вычисления, самостоятельно выбирать необходимые параметры из баз данных, обмениваться данными с внешними приложениями и, в конце концов, построить 3D-модель или чертеж неограниченной сложности с учетом всех параметров (вспомните хотя бы Редуктор3D, описанный в гл. 5).

Выбор того, что применять (параметризацию или программирование), зависит от поставленных перед вами задач. Если вам необходим просто набор надежно хранимых и удобных в использовании параметрических элементов, а главное – если с созданием самих этих элементов нет никаких проблем, конечно, лучше прибегнуть к параметризации и создавать простые библиотеки типовых элементов. Однако если вы планируете вводить в проектируемый модуль сложные

аналитические расчеты, предполагаете, что модуль будет принимать решения вместо проектировщика, взаимодействовать с внешними приложениями, считывать или сохранять данные, то этот модуль должен быть полноценной программой. Другими словами, к средствам программирования следует прибегать лишь тогда, когда вам необходимо создавать мини-САПР.

Конечно, практика разработки подключаемых модулей на языках Delphi, C++ и др. далеко не нова. Очень много известных приложений трехмерной графики формируют свою архитектуру открытой, предоставляя пользователям возможность расширять функциональность программ. Такими приложениями являются AutoCAD, Adobe Photoshop, 3ds Max (некоторые плагины для 3ds Max значительно расширяют функционал программы) и др. В этом разделе будет рассказано о создании пользовательских приложений на базе КОМПАС-3D в одной из самых популярных на сегодня сред программирования – Borland Delphi 7.

Внимание!

Данный раздел рассчитан на читателей как минимум знакомых с основами объектно-ориентированного программирования и имеющих представление о работе в программной среде Delphi 7. Вы должны знать основополагающие понятия программирования, такие как класс, объект, интерфейс, метод и пр. В противном случае рекомендую вам изучить какую-либо книгу о программировании в Delphi.

КОМПАС-Мастер предоставляет доступ как к функциям КОМПАС-График, так и к функциям трехмерного моделирования в КОМПАС-3D. Сам доступ может реализоваться двумя путями:

• с использованием экспортных функций, оформленных в виде DLL-модулей, которые разработчик подключает к своей программе при создании плоских чертежей, и с применением СОМ-объектов – при программном формировании твердотельных моделей;

• при помощи технологии Automation (автоматизации). Эта технология реализована через API (Application Programming Interface, интерфейс прикладного программирования) системы КОМПАС. Управление и взаимодействие с системой при этом оформлено через интерфейсы IDispatch.

Далее в этом разделе пойдет речь о программировании прикладных библиотек, работающих именно с трехмерным редактором КОМПАС-3D. По этой причине необходимо сказать о том, благодаря чему возможно создание таких прикладных модулей.

Технология COM, автоматизация и интерфейсы IDispatch

Поскольку программирование не является темой данной книги, мы не будем углубляться в суть понятий технологии COM и автоматизации. Я опишу эти вопросы вкратце, чтобы вы имели некоторое представление.

С начала 1990 годов корпорация Microsoft разрабатывает технологию, позволяющую создавать гибкие модульные программы таким образом, чтобы отдельные модули можно было писать на разных языках программирования, но чтобы при этом обеспечивалась их полная взаимозаменяемость при использовании в различных программных пакетах. На сегодня эта технология полностью сформирована и называется COM (Component Object Model, модель компонентных объектов).

Технология COM описывает методологию реализации компонентов программного обеспечения: объектов, которые могут повторно использоваться, могут быть неоднократно подключены к разным приложениям. Повторное использование компонентов стало логическим следствием эволюции объектно-ориентированного программирования и получило название компонентно-ориентированного подхода. Концепция компонентно-ориентированного программирования предусматривает полное отделение внутренних функций компонента от функций доступа к нему извне. Теперь, обращаясь к компоненту, необязательно знать его внутреннее устройство, для этого достаточно лишь иметь информацию о том, как вызывать его функции. Другими словами, необходимо знать, как взаимодействовать с компонентом и какой у него интерфейс. Такая функциональность в COM достигается за счет поддержки одного или нескольких интерфейсов, которые используются другими программами для доступа к внутренним членам и методам компонента.

Поделиться:
Популярные книги

Энфис 6

Кронос Александр
6. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 6

Сын Петра. Том 1. Бесенок

Ланцов Михаил Алексеевич
1. Сын Петра
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Сын Петра. Том 1. Бесенок

Драконий подарок

Суббота Светлана
1. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
7.30
рейтинг книги
Драконий подарок

Лейб-хирург

Дроздов Анатолий Федорович
2. Зауряд-врач
Фантастика:
альтернативная история
7.34
рейтинг книги
Лейб-хирург

Последнее желание

Сапковский Анджей
1. Ведьмак
Фантастика:
фэнтези
9.43
рейтинг книги
Последнее желание

Объединитель

Астахов Евгений Евгеньевич
8. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Объединитель

Возмездие

Злобин Михаил
4. О чем молчат могилы
Фантастика:
фэнтези
7.47
рейтинг книги
Возмездие

Двойник Короля

Скабер Артемий
1. Двойник Короля
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Двойник Короля

Повелитель механического легиона. Том VIII

Лисицин Евгений
8. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том VIII

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6

Законы рода

Flow Ascold
1. Граф Берестьев
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Законы рода

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Холодный ветер перемен

Иванов Дмитрий
7. Девяностые
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Холодный ветер перемен

Гром над Академией Часть 3

Машуков Тимур
4. Гром над миром
Фантастика:
фэнтези
5.25
рейтинг книги
Гром над Академией Часть 3