Чтение онлайн

на главную - закладки

Жанры

Компьютерра PDA N63 (16.10.2010-22.10.2010)

Компьютерра

Шрифт:

– Что такое В-фабрики?

– Это другой класс электрон-позитронных коллайдеров высокой интенсивности, который нацелен на исследование b-кварка. Почему «b»? Название происходит от английского beauty quark – это так называемый пятый кварк. Мы знаем, что в природе наблюдается 6 кварков: u-кварк, d-кварк, c-кварк, s-кварк, b-кварк, t-кварк. Они имеют разные массы. Масса b-кварка около 5 ГэВ. Ясно, чтобы изучать частицы, содержащие b-кварк, нам нужна энергия больше 5 ГэВ. В-фабрики – это электрон-позитронные установки с энергией приблизительно 5, 5 ГэВ в пучке с максимально возможной эффективностью, потому что мы исследуем очень редкие явления распада b-кварка. Две таких установки успешно работали последние десять лет в США и Японии. Мы принимаем активное участие в разработке, создании, проведении самих экспериментов и получении конечных физических результатов на этих установках.

– А

чем вы сейчас занимаетесь на ВЭПП-4?

– Особенностью этой установки является то, что мы научились на ней как никто другой хорошо измерять энергию пучков. Для наших экспериментов нужна либо большая энергия, либо большая интенсивность, но есть еще и третий параметр, это высокая степень точности определения энергии. Оказывается, что для некоторых экспериментов это очень важно.

– Расскажите, пожалуйста, подробнее про процесс ускорения пучка!

– Что такое пучок частиц? Это, скажем, десять миллиардов частиц, такое количество электронов в пучке, каждый из которых обладает энергией, близкой к 5,5 ГэВ. Это означает, что этот электрон движется практически со скоростью света и обладает энергией, равной приблизительно 5,5 массам покоя протонов. Как мы управляем энергией частиц? Мы их ускоряем в электрическом поле. Пройдя разность потенциалов в несколько сотен киловольт, частица увеличивает свою энергию, дальше она делает оборот в магнитном кольце ускорителя, и снова влетает в ускоряющее устройство. Потом, если бы эта частица не теряла энергию, ее энергия увеличивалась бы до тех пор, пока магнитное поле в установке позволяло бы удерживать ее на нужной траектории движения. На самом деле электроны и позитроны, двигаясь в магнитном поле ускорителя, излучают фотоны, тем самым теряют часть энергии. Поэтому мы добавляем энергию, а за время оборота частицы ее теряют. Можно подобрать такой режим работы установки, что энергия будет расти, пока не достигнет необходимой величины, и на этой энергии частицы попадают в состояние равновесия. То есть, сколько электронам добавляют энергии в ускоряющем промежутке, столько они ее и теряют на одном обороте. Установившаяся энергия есть энергия эксперимента. Сталкивают электроны и позитроны при этой установившейся энергии. Энергия частиц в коллайдере - управляемая величина. Энергию пучков для некоторых экспериментов нужно знать с предельно возможной точностью. Оказывается, что это технически непростая задача. Мы научились решать ее. Например, если энергия электрона 5 ГэВ, то мы можем знать ее с точностью до 10 КэВ. В некоторых экспериментах, особенно по измерению масс частиц, это оказывается очень важным. Наша установка является уникальной. Подобных ускорителей, на которых энергию можно измерять с такой точностью, в мире больше нет. Поэтому мы используем ее в основном для прецизионных измерений такого важного параметра для частиц, как масса. Мы измерили массы целого набора частиц. Этот эксперимент будет продолжаться до тех пор, пока мы сможем получать новую недоступную никому информацию.

– Ускоритель работает в непрерывном режиме?

– Наши установки работают, как правило, полгода в год. Сейчас ускоритель остановлен для небольшой модернизации, а в начале ноября мы планируем его снова включить.

– Расскажите, пожалуйста, про концепцию Круглых Пучков! Как она помогает повысить светимость?

– Для этого нужно понимать, что ограничивает интенсивность установки. Казалось бы, производи больше частиц, помещай их в этот ускоритель, сталкивай, и светимость будет расти. К сожалению, все гораздо сложнее. Вы знаете, в чем проблема управляемого термоядерного синтеза?

– Сложно удержать плазму.

– А почему ее сложно удержать? Строят же установки, чтобы удержать плазму и нагреть ее до нужной температуры и плотности. Казалось бы, заливай эту плазму как можно больше, вот тебе и термояд. К сожалению, плазма так же, как и электронный или протонный пучок, очень своеобразная материя, обладающая особыми свойствами. В частности, она не хочет удерживаться, она обладает таким количеством степеней свободы, что не хочет пребывать в состоянии управляемости, в ней все время норовят развиться различного типа неустойчивости. Это приводит к тому, что плазма попадает на стенку и теряется. Похожим образом ведет себя и пучок в ускорителе. Для того чтобы удержать сгусток внутри накопителя или коллайдера, требуются специальные меры. И чем больше интенсивность пучка, тем труднее его удержать в такой установке. Более того, в момент столкновения сгустков частиц, электромагнитное поле одного пучка действует на другой пучок, и возбуждает колебания. Развивается неустойчивость, пучок попадает на стенку и теряется. Это довольно сложный процесс, поэтому физика коллайдеров высокой интенсивности – это самостоятельная отрасль науки. У нас

есть даже отдельная специализация – физика ускорителей. Для того чтобы создать новую установку, надо сначала понять, а будет ли пучок в ней жить, то есть предсказать «на бумаге», что она будет работать.

Зачем нужен круглый пучок? Обычно электронный пучок в накопителе плоский. Это происходит потому, что вертикальные колебания в пучке гораздо слабее, чем горизонтальные. Частицы, двигаясь по окружности, излучают фотоны. В момент излучения равновесные энергия и радиус орбиты частицы меняются скачком. Поэтому в горизонтальном направлении (в плоскости кольца ускорителя) размер пучка в разы больше, чем в вертикальном. При проектировании установки ВЭПП-2000 была предложена необычная схема, когда колебания частиц в накопителе в вертикальной и горизонтальной плоскостях принудительно делаются симметричными. Оказывается, что при определенных условиях, круглые пучки позволяют получить большую светимость. В настоящий момент установка начала работать. И действительно, первые результаты показали, что для условий нашего эксперимента при низких энергиях такие пучки дают преимущество по сравнению со стандартным подходом.

– Каких Вы ждете результатов от ВЭПП-2000?

– Установка начала свою работу на эксперимент в прошлом году. Во-первых, было продемонстрировано, что круглые пучки позволяют получить большую светимость. Второе, что теперь нужно сделать, это испытать новые модернизированные детекторы, показать, что они тоже работают. Так что пока главный результат – это то, что установка работает. Мы уверены, что в последующем будет получена новая научная информация. Будут измерены с лучшей точностью те физические процессы, которые уже ранее изучались. Например, аннигиляция электрон-позитронной пары в адроны. То есть на этой установке могут рождаться разные типы частиц, и мы хотим более точно измерить вероятность этих процессов. Кроме того, поскольку энергия пучков сейчас стала несколько больше, на этой установке появляется возможность рождать протон-антипротон и нейтрон-антинейтрон пары вблизи порога рождения этих частиц. До сих пор детально изучать такое явление было невозможно. Это будет новая информация, которая недоступна другим установкам с гораздо большей энергией и светимостью.

– Расскажите, пожалуйста, про использование выведенных пучков синхротронного излучения, которое осуществляется на ВЭПП-3 и ВЭПП-4.

– Как я уже говорил, при движении частицы в накопителе излучают свет. Этот свет называется синхротронным излучением. Оказывается, свойства этого синхротронного излучения уникальны. Дело в том, что излучение имеет очень высокую яркость. Рентгеновские аппараты не позволяли достичь такой яркости. Таким образом, накопители электронов являются уникальными источниками рентгеновского излучения для многих экспериментов по физике твердого тела, структурному анализу и других, где нужны очень качественные источники излучения. Поэтому, естественно, физики решили использовать накопители электронов не только для экспериментов по физике высоких энергий, но и в качестве источников света с уникальными возможностями для исследований в других областях науки. И, действительно, это очень плодотворное направление. Получается, что решая задачи в одной области науки, мы создали установки, позволяющие исследовать широкий класс явлений в других науках. Это биология, медицина, геология, то есть целая новая отрасль.

– А как отводится синхротронное излучение?

– Создаются специальные каналы, через которые рентгеновское излучение транспортируется к экспериментальной установке. В результате, пучок света становится тем инструментом, с помощью которого вы что-то исследуете, например, материал, либо новые явления. Сейчас стало ясно, что использование коллайдеров в качестве источника синхротронного излучения не всегда оказывается оптимальным. Гораздо выгоднее построить специализированную установку, основной задачей которой будет являться не исследование взаимодействия частиц, а именно проведение большого количества экспериментов с использованием синхротронного излучения.

– К вам приходят другие ученые?

– Да, у нас в институте на комплексе ВЭПП-3/ВЭПП-4 созданы условия для исследований с использованием синхротронного излучения. Многие научные сотрудники из соседних институтов используют эти возможности. Но нужно сказать, что сейчас мировая наука в этой области ушла гораздо дальше. Специализированные источники синхротронного излучения строятся по всему миру, а у нас в Академгородке, к сожалению, их нет. Это очень странная ситуация, потому что как раз сильной стороной Сибирского отделения всегда были междисциплинарные исследования. Мне кажется, что специализированный источник синхротронного излучения в Академгородке был бы очень полезен, в том числе и для развития новых технологий.

Поделиться:
Популярные книги

Жребий некроманта 2

Решетов Евгений Валерьевич
2. Жребий некроманта
Фантастика:
боевая фантастика
6.87
рейтинг книги
Жребий некроманта 2

Предатель. Вернуть любимую

Дали Мила
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Предатель. Вернуть любимую

Бывший муж

Рузанова Ольга
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Бывший муж

Мама для дракончика или Жена к вылуплению

Максонова Мария
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Мама для дракончика или Жена к вылуплению

Жандарм 5

Семин Никита
5. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 5

Менталист. Эмансипация

Еслер Андрей
1. Выиграть у времени
Фантастика:
альтернативная история
7.52
рейтинг книги
Менталист. Эмансипация

Кодекс Охотника. Книга XXIV

Винокуров Юрий
24. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXIV

Лорд Системы 14

Токсик Саша
14. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 14

Смерть может танцевать 4

Вальтер Макс
4. Безликий
Фантастика:
боевая фантастика
5.85
рейтинг книги
Смерть может танцевать 4

Идеальный мир для Лекаря 2

Сапфир Олег
2. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 2

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Не отпускаю

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
8.44
рейтинг книги
Не отпускаю

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Темный Патриарх Светлого Рода 3

Лисицин Евгений
3. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 3