Космическая битва империй. От Пенемюнде до Плесецка
Шрифт:
Для метеорной, тепловой и ультрафиолетовой защиты обитаемых помещений поезда был разработан трёхслойный корпус. Сверху и изнутри — стенки из специальных сплавов, между ними — подушка из вспененного наполнителя. Полный вес «лунного поезда» составлял 8 т.
Найдя наиболее подходящее место для постоянной базы, члены экипажа поезда должны были вызвать транспортные ракеты с оборудованием для монтажа комплекса на 12 человек. Первоначально она должна была состоять из девяти типовых блоков цилиндрической формы. Габариты блока: длина — 8,6 м, диаметр — 3,3 м, полная масса — 8 т. Каждый блок имел своё назначение: командный пункт, научная лаборатория, медпункт со спортзалом,
Кстати, опытный образец одного из таких блоков использовался в 1967 году во время экспериментов по длительному пребыванию в замкнутой среде в Институте медико-биологических проблем. Однако проект в полном объёме, требовавший для своего осуществления 50 млрд. тогдашних рублей (или 80 млрд. долларов), советская экономика не потянула. И его отложили до лучших времён.
ПРОЕКТ НПО «ЭНЕРГИЯ». Не остался в стороне от этой темы и академик В.П. Глушко. Вслед за своим проектом осуществления лунной экспедиции он в 70-е годы XX века выдвинул и концепцию создания многоцелевой лунной базы.
Причём в отличие от других разработчиков Валентин Петрович акцентировал внимание на максимальном использовании при строительстве и эксплуатации такой базы местных ресурсов. Он полагал, что на Луне может быть развёрнуто целое производство, которое сможет обеспечить, например, заправку и ремонт кораблей дальнего космического поиска. И эта идея, похоже, и по сей день не потеряла своей актуальности.
ТЕРМОЯД НА ЛУНЕ. Недавняя речь нынешнего президента США Джорджа Буша-младшего в штаб-квартире НАСА, где он объявил о планах колонизации Луны и Марса, заинтересовала как общественность, так и специалистов. Причём профессионалы в отличие от любителей услышали в словах Буша и то, о чём он, вероятно, и не хотел бы распространяться пока публично: план колонизации Луны — не столько космическая, сколько экономическая программа.
Именно на этот аспект обратил внимание присутствующих на одном из недавних заседаний Президиума Российской академии наук директор Института геохимии и аналитической химии РАН академик Эрик Михайлович Галимов.
Пессимисты уже сегодня говорят о том, что через 20–30 лет запасов нефти и газа человечеству перестанет хватать, сказал академик. Оптимисты называют срок в 50–100 лет. Тем не менее и те и другие сходятся во мнении, что людям пора искать иные источники энергии, чем газ, нефть, уголь и прочие полезные ископаемые.
Всевозможные ветряки, солнечные батареи, геотермальные источники — это пока экзотика, даже все вместе они покрывают не более 1% мирового энергопотребления. {4}
Полвека назад большие надежды связывались с атомной энергетикой. Но уже сегодня понятно, что и с ядерными отходами хлопот не оберёшься.
Остаётся термоядерная энергия. Впервые идея создания термоядерного реактора была публично высказана И.В. Курчатовым в 1956 году. Однако с той поры прошло почти полвека, а воз и ныне там — дело не продвинулось дальше создания экспериментальных установок.
4
Кроме химических источников, значительную, а в ряде регионов мира и подавляющую, долю составляет энергия рек, а также приливов. ( Прим. ред.)
Правда, ныне международный проект термоядерного реактора ИТЭР, в котором участвует и Россия, дошёл уже до стадии определения площадки для строительства экспериментальной установки. Вероятнее всего, в конкурсе победит Франция.
Но Соединённые Штаты, самый богатый участник проекта, вышли из проекта ИТЭР. В США считают, что построят термоядерный реактор своими силами быстрее, чем вместе со всем миром.
Кроме того, возникли разногласия по поводу того, какой именно термоядерный реактор строить. Дело в том, что большинство специалистов предполагают, что в качестве топлива в таком реакторе надо использовать изотопы водорода — дейтерий и тритий, которых достаточно много в воде Мирового океана.
Однако, во-первых, из Мирового океана добыть изотопы не многим проще, чем уран из урановой руды. Во-вторых, циклы на основе дейтерия приводят к излучению потоков нейтронов. Они глубоко проникают в окружающие реактор конструкции, создавая наведённую радиоактивность, которая затем сохраняется долгие годы. Стало быть, как и в случае с атомными «котлами», возникает проблема избавления от отслуживших свой срок конструкций, которые продолжают «фонить» сотни и даже тысячи лет.
Поэтому в последние годы всё большее количество специалистов обращают свои взоры на термоядерные реакции с участием гелия-3. Этот изотоп позволяет получить поток протонов, которые не дают наведённой радиоактивности, а стало быть, нет и проблемы с радиоактивными отходами.
Застрельщиком в этом деле, в частности, выступает Висконсинский университет, США. Там есть экспериментальная установка и уже получен поток протонов, свидетельствующий о том, что реакция, в принципе, осуществима.
Причём человечество накопило уже определённый опыт в работе с термоядерными установками. И дальше дела должны пойти куда быстрее. На что раньше требовалось полвека, ныне может быть освоено всего за 5–10 лет.
Однако есть тут и свои сложности. Гелия-3 на нашей планете очень мало. Его, конечно, хватит, чтобы провести экспериментальные работы. Но вот о промышленном производстве энергии на основе гелия можно будет говорить лишь в том случае, если мы сможем привозить гелий-3 с… Луны.
Его там в отличие от Земли содержится огромное количество в лунном грунте — реголите. Нам же для энергетики потребуется, кстати, не так уж много гелия-3. Расчёты показывают, что в год достаточно будет доставить около 20 т гелия, чтобы с лихвой обеспечить все энергетические потребности Земли. А для этого вполне достаточно пары рейсов такого космического корабля, как «Шаттл».
Однако, чтобы возить с Луны не сырьё — лунный грунт, — а уже сам концентрат, на Луне придётся создать инфраструктуру для переработки сырья и получения готового продукта. Причём производство это нужно будет налаживать заранее, а не в тот момент, когда возникнет острая необходимость в получении гелия-3 в промышленных объёмах.
Стало быть, предварительно придётся решить ещё множество задач. Нужно будет восстановить технологию и оборудование для полётов на Луну, построить там постоянно действующую колонию, отработать саму технологию добычи и переработки гелия, его сжижения, выделения из него изотопа гелия-3, который занимает всего-навсего тысячную долю от общего объёма, создать для этого соответствующую промышленную инфраструктуру…
В общем, проблем немало, и за ближайшие лет 10–20 их не решить. Правда, особых научных трудностей на этом пути не видно. Технологии все известны уже в настоящее время. Их нужно будет лишь воспроизвести на Луне в промышленных масштабах. Хотя это хлопотно, дорого, но вполне осуществимо.