Космические рубежи теории относительности
Шрифт:
Днем звёзды увидеть нельзя - слишком уж ярко светит Солнце. Однако при полном солнечном затмении (рис. 5.7) Луна полностью закрывает ослепительный солнечный диск, и звёзды становятся на несколько минут видимыми. Если сравнить фотографии звёзд, оказавшихся вблизи Солнца во время полного затмения, и фотографии той же части неба, снятые за несколько месяцев до затмения, когда Солнце находится среди других созвездий, в руки астрономов попадут новые данные для проверки общей теории относительности Эйнштейна.
РИС. 5.7. Полное солнечное затмение. Во время фазы полного затмения на небе вблизи Солнца можно увидеть звёзды (правда, на этом снимке, предназначенном для наблюдений солнечной короны, их не видно). Точное измерение смещения положений звёзд,
Для наблюдения полного солнечного затмения 29 мая 1919. г. Королевское общество Англии снарядило две экспедиции астрономов. Одна экспедиция отправилась в Бразилию, а другая - на западное побережье Африки. Первые же измерения на отснятых фотопластинках стали величайшим событием в жизни сэра Артура Эддингтона, руководителя африканской экспедиции. Предсказание Эйнштейна о гравитационном отклонении лучей света было подтверждено с полной несомненностью.
С тех пор почти при каждом солнечном затмении астрономы стремятся провести очередное измерение отклонения света звёзд Солнцем. Так как солнечные затмения нередко наблюдаются лишь в труднодоступных местах Земли, то астрономам, желающим провести наблюдения, приходится странствовать со всем своим оборудованием куда-нибудь вверх по Амазонке или среди песков пустыни Сахары. Когда наступает момент полного затмения, эти несчастные, возможно, стоят по колени в болоте, облепленные москитами и осаждаемые ещё более опасными тварями. Выражаясь языком науки, «экспериментальные погрешности» при таких наблюдениях затмений зачастую оказываются слишком большими. Но должен найтись выход из положения
Потребность более строгой проверки общей теории относительности стала ощущаться особенно остро к концу 1960-х годов. К этому времени ряд хитроумных физиков предложили новые теории тяготения, приобретшие определённую популярность. Эти новые теории сохранили многие особенности общей теории относительности, поскольку они тоже выражают тяготение через кривизну пространства-времени. Но величина искривления пространства-времени в этих теориях оказывалась несколько иной, чем вычисленная по теории Эйнштейна. Наиболее популярная из этих неэйнштейновских теорий была сформулирована Р. Дикке и Ч. Брансом в Принстонском университете. Как в ньютоновской, так и в эйнштейновской теории тяготения имеется одно важное число – гравитационная постоянная. Её значение через посредство ряда математических выражений указывает соотношение между «силой» тяготения и силой остальных взаимодействий в природе. Указанное число было измерено в лабораторных экспериментах, причем получилось значение G=6,688•10– 8дин/см2•г2. Однако в конце 1930-х годов великий английский физик П. А. М. Дирак выразил серьёзное сомнение в том, что величина гравитационной постоянной была всегда такой же, как сейчас. Он выдвинул ряд интересных доводов в пользу того, что, возможно, в далёком прошлом величина гравитационной постоянной была намного больше, а затем постепенно убывала со временем. Бранс и Дикке развили эту мысль и сформулировали новую релятивистскую теорию тяготения, в которой гравитационная «постоянная» переменна. Уравнения поля тяготения в теории Бранса-Дикке очень похожи на уравнения теории Эйнштейна, но включают дополнительно ряд слагаемых, благодаря которым гравитационная постоянная может измениться. Окончательный вывод из теории Бранса-Дикке состоит в том, что отклонение лучей света Солнцем и величина смещения перигелия Меркурия должны быть несколько меньше, чем даёт теория Эйнштейна. Но точность измерения отклонения света при полных солнечных затмениях не настолько велика, чтобы сделать выбор между двумя конкурирующими теориями.
В 1960-х годах астрономы открыли на небе объекты, названные квазарами. На первый взгляд квазары выглядят как обычные звёзды, но при более тесном знакомстве у них обнаруживаются многие свойства, обычно присущие лишь далеким галактикам. Хотя мы до сих пор не разгадали природу квазаров, мы уже знаем, что они излучают огромное количество радиоволн.
РИС. 5.8. Квазар 3C273.Квазары - мощные источники космических радиоволн. Измеряя отклонение радиоволн, приходящих к нам от квазара ЗС 273, под действием тяготения Солнца, астрономы получили новое подтверждение правильности общей теории относительности. (Обсерватория им. Хейла.)
Факт чрезвычайной «яркости» квазаров в радиодиапазоне подсказал
В начале 1970-х годов радиоастрономы провели ряд наблюдений отклонения радиоволн Солнцем. В октябре 1972 г. измерялись угловые расстояния между квазарами ЗС 273 и ЗС 279. Когда Солнце сближалось на небосводе с квазаром 3C273, угловое расстояние на небе между этими двумя квазарами слегка изменялось вследствие отклонения радиоволн, идущих от квазара ЗС 273. Результаты наблюдений с чрезвычайно высокой степенью точности соответствовали общей теории относительности Эйнштейна.
Лучше всего разобраться в том, как геометрия пространства-времени влияет на поведение световых лучей и частиц, можно с помощью так называемых диаграмм вложения. Как упоминалось в предыдущих главах, наглядно представить себе искривлённое 4-мерное пространство-время невозможно. Чтобы обойти эту трудность, физики-теоретики иногда предпочитают представить себе явления в двух измерениях, а затем обобщить результаты на случай четырёх измерений. Бывает и так, что они для лучшего понимания следствий из своих уравнений «выключают» два измерения из четырёх и рассматривают получившуюся двумерную искривлённую поверхность. Образно говоря, суть дела сводится к сечению искривлённого пространства-времени и исследованию вида получающейся поверхности. Это можно сравнить с тем, как вы стали бы разрезать торт, чтобы увидеть последовательность слоёв теста и крема и расположения глазури. Срез через пространство-время называется гиперповерхностью, а если срез делается перпендикулярно оси времени, то гиперповерхность называется пространственноподобной. Изображать такие пространственноподобные гиперповерхности - значит строить диаграммы вложения.
Для лучшего понимания диаграмм вложения рассмотрим плоское пространство-время - его можно найти где-нибудь вдали от всех источников тяготения. Срез через плоское пространство-время даёт нам плоскую двумерную гиперповерхность. Эта поверхность является плоской в том же самом смысле, в каком мы говорим о плоском поле или плоской поверхности стола. Изображение такой поверхности (см. рис. 5.9) и есть, по существу, диаграмма вложения.
РИС. 5.9. Плоское пространство. Диаграмма вложения для плоского пространства-времени выглядит просто как обычная плоскость. Положение точек на такой пространственноподобной гиперповерхности может быть охарактеризовано как прямоугольными (справа), так и полярными (слева) координатами.
Обратимся теперь к искривлённому пространству-времени вокруг Солнца. Солнце не изменялось на протяжении миллиардов лет, так что не изменялась и геометрия пространства-времени вокруг него. И пространственноподобная гиперповерхность будет выглядеть через миллиард лет так же, какой она была миллиард лет назад. Однако если такое пространство-время рассечь, то получившаяся гиперповерхность уже не будет плоской ввиду искривляющего воздействия гравитационного поля Солнца. На рис. 5.10 приведена диаграмма вложения, изображающая это искривление. Штриховкой помечена область, где находится Солнце. Диаграмма вложения в сущности показывает, как действовала бы гравитация, если бы мы жили не в четырёхмерном пространстве-времени, а в двумерном пространстве. Она поясняет, как тяготение влияет на кривизну пространства.
С помощью диаграммы вложения можно наглядно представить себе эффект отклонения света звёзд (или радиоволн от квазаров). Поскольку гиперповерхность на рис. 5.10 не плоская, световые лучи, распространяющиеся по этой искривлённой поверхности, не будут прямолинейными. Как видно на рис. 5.11, геодезические, по которым следуют световые лучи звёзд, искривлены, и потому кажется, что звёзды сдвинуты со своих обычных мест.
РИС. 5.10. Искривлённое пространство. Диаграмма вложения наглядно изображает кривизну пространства вблизи Солнца. Штриховкой показано местоположение Солнца. (По Мизнеру, Торну и Уилеру.)