Чтение онлайн

на главную

Жанры

Космические рубежи теории относительности
Шрифт:

РИС. 4.14. Орбита Меркурия. На рисунке показано, что орбита Меркурия очень медленно поворачивается вперёд по ходу движения планеты. Это свойство не поддаётся объяснению с помощью законов Ньютона.

Учитывая историю с Ураном и Нептуном, некоторые астрономы выдвинули предположение о существовании неизвестной планеты между Солнцем и Меркурием - Вулкана и принялись за её поиски, но безуспешно. Тогда другие астрономы предложили несколько видоизменить закон Ньютона, однако те поправки, которые нужно было ввести в закон для объяснения движения Меркурия, приводили к неверным результатам для внешних планет. Одним словом, классической физике Ньютона не удалось объяснить незначительную, но тревожную аномалию движения Меркурия. Пришла пора снова радикально перестроить

наши представления.

Ещё в гл. 1 мы говорили о том. что, смотря на звёзды в ночном небе, мы в действительности заглядываем в прошлое. Это заставляет нас думать о времени как о четвертом измерении, существующем наряду с тремя обычными пространственными измерениями. Однако, наблюдая небо, мы обнаруживаем к тому же, что в астрономических масштабах тяготение - это самая главная сила природы. Оно удерживает Луну на её орбите вокруг Земли; оно обеспечивает устойчивость Солнечной системы; и тяготение оказывается главной силой взаимодействия между звёздами и галактиками, по-видимому определяя как прошлое, так и будущее Вселенной как целого. Как было бы замечательно, если бы эти два фундаментальных представления можно было бы как-то объединить и создать теорию, выражающую одно через другое. Тогда гравитация оказалась бы геометрией пространства-времени, а геометрия пространства-времени - гравитацией.

РИС. 4.15. Альберт Эйнштейн (1879-1955).

Начнем с того, что понятие гравитации как «силы» на самом деле относительно. Представьте себе, что вы стоите в комнате без окон. Вы ощущаете, что ваши ноги опираются в пол, на котором спокойно стоит мебель и другие предметы. Уронив яблоко, которое вы держали перед собой, вы увидите, что оно падает вертикально на пол с постоянным ускорением. Если бы чти явления наблюдал Исаак Ньютон, то он наверняка заключил бы, что комната находится на поверхности какой-то планеты, скажем Земли, и на все предметы в ней действует сила тяготения, вызывающая наблюдаемые явления. Именно тяготение удерживает вас и окружающую мебель на полу, и оно же ускоряет падающие предметы, скажем яблоко. На первый взгляд здесь невозможно усмотреть какие-либо противоречия, однако в начале XX в. Альберт Эйнштейн (рис. 4.15) предложил совершенно иную трактовку явлений в этой гипотетической комнате. Предположим, что комната находится в космосе на расстоянии в миллионы километров от любых источников сил тяготения, но вам это неизвестно. Теперь предположим, что под полом комнаты работают мощные реактивные двигатели с огромным запасом топлива, но вам это также неизвестно. Если эти двигатели работают всё время, пока вы находитесь в этой комнате, и если они не порождают ни шума, ни вибраций, то во всем лишенном окон космическом корабле - вашей комнате - эти двигатели будут создавать ускорение, внушающее вам, будто вы покоитесь в каком-то поле тяготения. И эта иллюзия окажется настолько полной, что никакие эксперименты не помогут вам получить ответ, покоится ли ваша комната на поверхности планеты или находится в летящем по прямолинейной траектории космическом корабле (рис. 4.16).

РИС. 4.16. Принцип эквивалентности. С помощью опытов, проводимых в комнате без окон, невозможно выяснить, покоитесь ли вы в поле тяжести или подвергаетесь равномерному ускорению в далёком космосе. Оба случая полностью эквивалентны.

Эти примеры поясняют эйнштейновский принцип эквивалентности гравитации и ускорения. Согласно принципу эквивалентности, «локально», т.е. в малой области пространства, гравитацию и ускорение различить невозможно. На основании этого принципа полностью развенчивается представление о тяготении как о силе.

Широко распространено заблуждение (непонятно, откуда оно взялось?), будто специальная теория относительности неприменима к ускоренным системам отсчета. Совсем наоборот! Физики - ядерщики в своей повседневной работе со всей точностью используют частную теорию относительности для объяснения явлений, происходящих при фантастических ускорениях ядерных частиц высокой энергии. Поскольку специальная теория относительности - это один из лучших способов описания физической реальности, которым располагают учёные, то эту теорию можно привлечь, чтобы понять поведение предметов в нашей гипотетической комнате без окон. В самом деле, оказывается возможным использовать частную теорию относительности для решения всех вопросов о гравитации в нашей комнате, поскольку мы можем принять, что тяготение - это локальное явление, вызванное ускорением. По существу, так можно анализировать любые гравитационные поля. В частности, поле тяготения вблизи такого тела, как Земля, можно изучить, разбивая всё пространство на множество маленьких ячеек - комнаток. В каждой из них можно рассматривать ускорение, а не гравитацию и применять частную теорию относительности. Решив все интересующие нас вопросы для каждой из комнаток, мы объединим эти части в одно целое и получим общую картину. Выполняя подобное разбиение и последующее объединение, мы приходим к обобщению специальной теории относительности. В результате получается общая теория относительности.

Чтобы понять, как делается такое обобщение, рассмотрим в пространстве-времени мировую линию наблюдателя, претерпевающего кратковременное ускорение. Такая линия изображена на рис. 4.17. Мы без труда нарисуем сетку пространственно-временных координат нашего наблюдателя и после короткого периода ускорения. Если наблюдатель сначала покоится на диаграмме пространства-времени, то эта сетка будет совпадать с нашей собственной. Однако после периода ускорения наблюдатель движется по отношению к нам с некоторой скоростью. Согласно преобразованию Лоренца, обсужденному в предыдущей главе, пространственно-временная сетка движущегося наблюдателя будет казаться нам слегка скошенной, как это показано на рис. 4.17. Но там, где две сетки перекрываются, их согласовать будет невозможно.

РИС. 4.17. Недостаточность плоского пространства-времени для описания тяготения. При рассмотрении объектов, движущихся с ускорением, невозможно покрыть всё пространство-время единой сеткой координат.

Поскольку гравитацию можно рассматривать как эквивалент ускорения в удалённой от всех тел области космоса, мировую линию тела, падающего в поле тяготения, можно представить как бесконечно большое число очень слабо ускоренных движений, непрерывно следующих друг за другом. До и после каждого из таких периодов бесконечно малых ускорений можно строить пространственно-временные сетки. В результате окажется, что перед нами - бесконечное число областей с перекрытиями по всей диаграмме пространства-времени.

Причины этой трудности в том, что частная теория относительности ограничивается плоским пространством-временем. Области с перекрытиями возникают именно вследствие чересчур строгого применения понятия «плоское пространство-время в каждой точке и в каждый момент времени». Однако, если допустить, что пространство-время искривлено, эти трудности пропадут.

Но что такое искривлённое пространство-время? Чтобы ответить на этот вопрос, нужно сначала чётко выяснить смысл терминов «плоский» и «искривлённый». Для удобства, как это часто используется в теории относительности, ограничимся анализом двумерного случая. Если мы проведем анализ правильно, то его результаты можно будет распространить на все три измерения. Иными словами, если нам станет ясно, что понимается под утверждениями: «пол в комнате плоский», «поверхность баскетбольного мяча искривлена», то это послужит ключом к пониманию искривлённого пространства-времени.

Представьте себе плоскую поверхность типа изображенной на рис. 4.18. Пусть из какой-то одной её точки разбегается множество муравьев. Если каждый из них проползет по наикратчайшей линии одно и то же расстояние r от общей исходной точки и остановится, то в результате все муравьи расположатся на окружности с центром в исходной точке. Длина такой окружности равна 2r. Итак, полная длина кривой, вдоль которой разместятся в конце своего пути муравьи, будет равна 2r.

РИС. 4.18. Муравьи на плоской поверхности. Каждый муравей проходит одно и то же расстояние r от одной и той же точки по кратчайшему возможному пути. Концы путей лежат на окружности, длина которой составляет 2r.

РИС. 4.19. Муравьи на искривлённой поверхности. Каждый муравей проходит одно и то же расстояние r от одной и той же точки по кратчайшему возможному пути. Концы путей лежат теперь на кривой, уже не являющейся окружностью.

Поделиться:
Популярные книги

Царь поневоле. Том 1

Распопов Дмитрий Викторович
4. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Царь поневоле. Том 1

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Король Масок. Том 1

Романовский Борис Владимирович
1. Апофеоз Короля
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Король Масок. Том 1

Мерзавец

Шагаева Наталья
3. Братья Майоровы
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
5.00
рейтинг книги
Мерзавец

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Не грози Дубровскому! Том II

Панарин Антон
2. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том II

Девятый

Каменистый Артем
1. Девятый
Фантастика:
боевая фантастика
попаданцы
9.15
рейтинг книги
Девятый

Матабар. II

Клеванский Кирилл Сергеевич
2. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар. II

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал

Девочка по имени Зачем

Юнина Наталья
Любовные романы:
современные любовные романы
5.73
рейтинг книги
Девочка по имени Зачем

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Проданная Истинная. Месть по-драконьи

Белова Екатерина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Проданная Истинная. Месть по-драконьи

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи