Чтение онлайн

на главную

Жанры

Космические рубежи теории относительности
Шрифт:

РИС. 3.1. Наблюдатели и электродинамика. Одно и то же явление, связанное с электрическими и магнитными полями, выглядит по-разному для неподвижного и движущегося наблюдателей.

К счастью, Андрей и Борис знакомы с классической статьей Эйнштейна, название которой приведено выше. Им известно, что напряжённости электрического и магнитного полей в трёхмерном пространстве (измерения вверх-вниз, влево-вправо, вперёд-назад) можно объединить в одну математическую величину, называемую тензором напряжённости электромагнитного поля. Эта новая величина определена в четырёхмерном пространстве-времени (измерения вверх и вниз, налево и направо, вперёд и назад, в будущее и в прошлое). Знают они и о том, что электрические заряды и токи объединяются при этом в одну четырёхмерную величину, называемую 4-током (четыре-током). В результате четыре уравнения

Максвелла (рис. 2.3) сводятся всего лишь к двум ковариантным уравнениям (рис. 3.2). Они содержат всю информацию, заключающуюся в уравнениях Максвелла, и к тому же теперь все наблюдатели единодушны в том, что эти уравнения правильно описывают действительность. Больше не остаётся никаких источников для разногласий между разными наблюдателями, как бы они ни двигались. Отдельные составляющие тензора напряжённости соответствуют напряжённостям электрического и магнитного полей в различных направлениях. Отдельные составляющие 4-тока соответствуют электрическим зарядам и обычному току, текущему в различных направлениях. Для каждого наблюдателя конкретные численные значения этих составляющих будут своими, но общая картина, если её выразить с помощью принципа ковариантности, не вызовет разногласий.

f

x =

0J

f

x +

f

x +

f

x = 0

рис. 3.2. Ковариантная запись уравнений электродинамики. Теория электромагнетизма может быть сформулирована в пространстве-времени таким образом, что уравнения будут иметь одинаковый вид во всех системах отсчета. Тогда четыре уравнения Максвелла сводятся всего к двум ковариантным уравнениям.

На примере Бориса и Андрея видно, что если задача рассматривается в четырёхмерной системе координат, то все трудности устраняются и споры разрешаются. Чтобы яснее почувствовать мощь эйнштейновского подхода, обратимся к пространству и времени. Как мы уже знаем из гл. 2, различные наблюдатели, движущиеся относительно друг друга, никогда не смогут прийти к согласию относительно измеренных расстояний и времени. Часы замедляют ход, а линейки укорачиваются по мере приближения скорости к световой. Для разных наблюдателей расстояние между двумя объектами различно, не совпадает и промежуток времени между двумя событиями. А могут ли два наблюдателя, находящиеся в относительном движении, хоть в чем-нибудь прийти к согласию?

Точно так же как в опыте Бориса и Андрея, результаты измерений длины и времени можно объединить, получив интервал пространства-времени между двумя событиями. Три слагаемых, входящие в этот интервал, определяются по измерениям расстояний (вверх-вниз, влево-вправо, вперёд-назад) между точками, в которых произошли эти два события. Четвертое слагаемое - это промежуток времени между моментами, когда произошли события. Движущиеся относительно друг друга наблюдатели будут получать разные результаты, измеряя эти расстояния и промежутки времени, но придут к одному и тому же значению для полного интервала в четырёхмерном пространстве-времени. Поэтому говорят, что интервал инвариантен, т.е. он одинаков для всех, что схематически представлено на рис. 3.3. Для одного наблюдателя два события могут быть очень близки по времени (т.е. происходить почти одновременно), но разделены огромным расстоянием в пространстве. Для другого наблюдателя те же самые события могут происходить с большим разрывом во времени (скажем, одно через много часов после другого), но очень близко друг к другу в пространстве. И тем не менее для обоих наблюдателей полный интервал пространства-времени между этими двумя событиями будет одинаков. Сокращение длин линеек и замедление хода часов двух наблюдателей, предсказываемые преобразованием Лоренца, как раз таковы, что интервал сохраняет инвариантность.

РИС. 3.3. Инвариантный интервал. Наблюдатели, движущиеся относительно друг друга, не могут прийти к согласию относительно измерения расстояний и промежутков времени между двумя событиями. Однако каждый наблюдатель может объединить измеренные им расстояния и отрезки времени в интервал между этими двумя событиями в пространстве-времени, который будет одинаковым для всех наблюдателей.

Итак, интервал между событиями в пространстве-времени инвариантен, преобразования Лоренца связывают между собой конкретные результаты измерений длин и промежутков времени, произведенных разными наблюдателями. Чтобы нагляднее продемонстрировать следствия преобразований Лоренца, рассмотрим их влияние на пространство-время. Понятие пространства-времени было введено в предыдущей главе, а из анализа эффекта замедления течения времени мы поняли, почему запрещены светоподобные и пространственноподобные траектории материальных частиц. Как обычно, на диаграммах пространства-времени мы будем использовать такие масштабы по осям, чтобы траектория световых лучей изображалась линиями с наклоном 45°. Если, например, отрезок длиной 1 см по оси времени соответствует 1 с, то отрезок в 1 см по пространственной оси соответствует 300 000 км. Для простоты будем обозначать пространство-время покоящегося наблюдателя (такого, как мы на Земле) как систему x, t, а пространство-время движущегося наблюдателя как систему х', t'. Если изобразить обе такие системы на одном чертеже, то мы увидим, к чему приводят преобразования Лоренца. Из рис. 3.4 следует, что система x, t выглядит как обычная диаграмма пространства-времени. Но если на этот чертёж нанести систему х', t' (для удобства точечное событие, соответствующее данной точке пространства и данному моменту времени, в обеих системах одно и то же), то её оси отклонятся от осей системы x, t в направлении линии светового луча, идущей под углом 45°. Такое отклонение будет симметричным относительно линии светового луча, лишь если диаграмму рисовать в масштабах, при которых светоподобные линии наклонены под углом 45°. Кроме того, отклонение усиливается при увеличении скорости движения системы х', t' относительно системы x, t. Чем больше эта скорость, тем ближе к светоподобной линии с наклоном 45° оказываются оси х' и t'. Чтобы определить положение некоторого события в пространстве и времени в любой из двух систем отсчета, нужно провести из точки, обозначающей событие, прямые, параллельные соответствующим осям (рис. 3.5).

РИС. 3.4. Преобразование Лоренца. В результате преобразования Лоренца пространственная и временная оси пространства-времени движущегося наблюдателя приближаются к мировой линии светового луча.

РИС. 3.5. Понятие одновременности не имеет смысла. Два события, происходящие одновременно с точки зрения одного наблюдателя, могут относиться к весьма различным моментам времени с точки зрения другого.

Такое наглядное представление преобразований Лоренца показывает, что термин «одновременность» не имеет смысла. Рассмотрим, например, два события, А и В, которые являются одновременными в системе х, t. По определению это означает, что они оба произошли в один и тот же момент времени, т.е., как показано на рис. 3.5, tA = tB. Однако если рассматривать эти же два события в системе х', t' (движущейся относительно системы х, t), то они уже не будут одновременными. При этом всегда оказывается, что раньше произошло более удалённое событие.

Хотя движение быстрее света невозможно и хотя скорость света - абсолютная постоянная, при движении относительно источников света наблюдаются необычные явления. Чтобы разобраться в некоторых из них, представьте себе, что вы стоите под дождем, держа над головой раскрытый зонт. Представьте далее, что ветра нет, так что дождевые капли падают вертикально вниз. Если вы пойдете по улице, то вам, очевидно, придется наклонить зонт под некоторым углом в направлении движения, чтобы не намокнуть, причем угол наклона нужно будет увеличить, если вы ускорите шаг (рис. 3.6).

рис. 3.6. Прогулка под дождем. Человек, идущий под дождем, должен держать зонт несколько впереди себя, чтобы не намокнуть. Чем быстрее идет человек, тем сильнее ему приходится наклонять зонтик, чтобы оставаться сухим.

Аналогичное явление происходит и со светом звёзд. Земля движется по орбите вокруг Солнца со скоростью 30 км/с. Хотя эта скорость составляет очень малую долю скорости света, астрономам приходится из-за движения Земли немного наклонять свои телескопы вперёд в направлении этого движения, чтобы в трубу телескопа попал свет именно той звезды, которую они хотят наблюдать. Подобно тому как приходится наклонять зонт в направлении движения, приходится наклонять и телескоп на малый угол в направлении движения Земли (рис. 3.7). Этот эффект, называющийся аберрацией света звёзд, был открыт Джеймсом Брадлеем около 1725 г., когда он обратил внимание на разность между наблюдаемыми и истинными положениями звёзд. Угол аберрации чрезвычайно мал и не превышает 20,5". Для сравнения укажем, что видимый с Земли поперечник Юпитера составляет около 40".

РИС. 3.7. Аберрация света звёзд. Вследствие движения Земли телескоп приходится направить немного вперёд от звезды по направлению движения Земли, чтобы свет звезды попал в трубу телескопа.

Аберрация света звёзд так мала просто потому, что Земля движется очень медленно, со скоростью, составляющей всего одну десятитысячную скорости света. Если бы вы оказались на борту космического корабля, способного развить субсветовую скорость, то эффект аберрации стал бы очень заметным.

Поделиться:
Популярные книги

Царь поневоле. Том 1

Распопов Дмитрий Викторович
4. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Царь поневоле. Том 1

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Король Масок. Том 1

Романовский Борис Владимирович
1. Апофеоз Короля
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Король Масок. Том 1

Мерзавец

Шагаева Наталья
3. Братья Майоровы
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
5.00
рейтинг книги
Мерзавец

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Не грози Дубровскому! Том II

Панарин Антон
2. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том II

Девятый

Каменистый Артем
1. Девятый
Фантастика:
боевая фантастика
попаданцы
9.15
рейтинг книги
Девятый

Матабар. II

Клеванский Кирилл Сергеевич
2. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар. II

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал

Девочка по имени Зачем

Юнина Наталья
Любовные романы:
современные любовные романы
5.73
рейтинг книги
Девочка по имени Зачем

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Проданная Истинная. Месть по-драконьи

Белова Екатерина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Проданная Истинная. Месть по-драконьи

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи