Чтение онлайн

на главную - закладки

Жанры

Космос Эйнштейна. Как открытия Альберта Эйнштейна изменили наши представления о пространстве и времени
Шрифт:

И наконец, он стремился решить давнюю проблему: определить, почему орбита Меркурия «плывет» и слегка отклоняется от параметров, предписанных законами Ньютона. В обычных условиях планеты в своем движении вокруг Солнца описывают идеальный эллипс с легкими возмущениями, вызванными притяжением ближайших планет, и в целом их траектория напоминает лепестки цветка. Однако в орбите Меркурия, даже с учетом влияния на него ближайших планет, наблюдается небольшое, но заметное отклонение от законов Ньютона. Это отклонение, известное как «прецессия перигелия», первым наблюдал в 1859 г. астроном Урбен Леверье; его расчеты дали крохотный сдвиг перигелия орбиты Меркурия, равный 43,5 угловые секунды за столетие, который было невозможно объяснить законами Ньютона. Сам по себе факт существования в ньютоновых законах движения очевидных нестыковок новостью не был. В начале XIX в., когда астрономы ломали головы над аналогичными возмущениями орбиты Урана, перед ними встал непростой выбор: либо отказаться от известных законов движения, либо постулировать существование еще одной, неоткрытой планеты, действующей на орбиту Урана. В 1846 г., когда

в том самом месте, где должна была находиться эта планета согласно законам Ньютона, действительно обнаружили новую планету – Нептун, физики вздохнули с облегчением.

Но Меркурий по-прежнему оставался загадкой. Не желая отказываться от законов Ньютона, астрономы по традиции постулировали существование еще одной планеты и даже дали ей название Вулкан; подразумевалось, что эта неизвестная планета обращается вокруг Солнца внутри орбиты Меркурия. Однако как ни всматривались астрономы в ночное небо, они не могли отыскать никаких экспериментальных доказательств ее существования.

Эйнштейн был готов принять более радикальную интерпретацию: возможно, сами законы Ньютона неверны или по крайней мере неполны. В ноябре 1915 г. после трех лет, растраченных впустую на теорию Эйнштейна – Гроссмана, он вернулся к кривизне Риччи, от которой отказался в 1912 г., – и заметил свою ключевую ошибку. Эйнштейн отбросил кривизну Риччи [14] потому, что, исходя из нее, для произвольного материального объекта можно было получить больше одного гравитационного поля, что казалось нарушением принципа Маха. Но затем общая ковариантность помогла ему понять, что на самом деле эти гравитационные поля математически эквивалентны и дают один и тот же физический результат. Мощь общей ковариантности произвела на Эйнштейна сильное впечатление: она не только серьезно ограничила возможные теории гравитации, но обеспечила единственно возможный физический результат, поскольку многие гравитационные решения оказались эквивалентными.

14

Общая ковариантность означает, что уравнения сохраняют форму при изменении координат (сегодня это называют «калибровочным преобразованием»). Эйнштейн в 1912 г. не понимал, что, исходя из этого, физические предсказания его теории также остаются неизменными при преобразовании координат. В 1912 г. он, к своему ужасу, обнаружил, что его теория дает бесконечное число решений для гравитационного поля вокруг Солнца. Однако через три года вдруг осознал, что все эти решения описывают одну и ту же физическую систему – Солнце. Таким образом, кривизна Риччи оказалась вполне подходящим математическим инструментом, способным однозначно описать гравитационное поле вокруг звезды согласно принципу Маха. – Прим. авт.

После этого для Эйнштейна начался период величайших (возможно, во всей его жизни) ментальных усилий – поиска окончательного уравнения. Он отбросил все постороннее и напряженно трудился, пытаясь рассчитать прецессию перигелия Меркурия. Найденные записные книжки показывают, что он раз за разом предлагал решение, а затем тщательнейшим образом проверял, получается ли из него в пределе при малых гравитационных полях старая теория Ньютона. Задача оказалась чрезвычайно трудоемкой, так как тензорные уравнения включали в себя десять отдельных уравнений вместо одного у Ньютона. Если предложенное решение не давало в пределе уравнения Ньютона, Эйнштейн брал следующее и проверял, не получится ли из него нужный результат. Этот изматывающий, почти геркулесов труд был наконец завершен в конце ноября 1915 г. Эйнштейн чувствовал себя совершенно измученным. После долгих утомительных вычислений по старой теории 1912 г. выяснилось, что предсказанная ей прецессия орбиты Меркурия составляет 42,9 угловой секунды за столетие, что с вполне приемлемой точностью совпадало с экспериментальной величиной. Эйнштейн был потрясен. Первое надежное экспериментальное доказательство в пользу новой теории буквально опьяняло его. «Несколько дней я был вне себя от возбуждения, – вспоминал он. – Мои самые дерзкие мечты сбылись». Сбылась мечта всей жизни – найти релятивистские уравнения для гравитации.

Эйнштейна потрясло, что при помощи абстрактного физико-математического принципа общей ковариантности ему удалось получить надежный и убедительный результат, совпадающий с экспериментальными данными: «Представьте себе, как я радовался практической применимости общей ковариантности и тому, что в результате из уравнений мне удалось корректно вывести смещение перигелия Меркурия».

Воспользовавшись новой теорией, он заново рассчитал отклонение света звезд Солнцем. Добавление к его теории искривленного пространства означало, что конечный результат составит 1,7 угловой секунды (около 1/2000 доли градуса), то есть вдвое больше, чем он считал ранее.

Эйнштейн был убежден, что его новая теория настолько проста, элегантна и мощна, что ни один физик не сможет устоять перед ее гипнотическим притяжением. «Вряд ли кто-нибудь, кто по-настоящему понял эту теорию, сможет устоять перед ее очарованием, – напишет он позже. – Это теория несравненной красоты». Поразительно, но принцип общей ковариантности оказался настолько мощным инструментом, что окончательное уравнение, описывающее структуру самой Вселенной, получилось совсем коротким, его длина не дотягивает даже до трех сантиметров. (Физики и сегодня удивляются, что такое короткое уравнение может описать возникновение и эволюцию Вселенной. Физик Виктор Вайскопф сравнил свой восторг с чувствами крестьянина, впервые в жизни увидевшего трактор. Облазив трактор вдоль и поперек и заглянув под капот, он ошеломленно спрашивает: «А где же лошадь?»)

Единственное,

что омрачало Эйнштейну триумф, это мелкий спор за приоритет с Давидом Гильбертом – величайшим, наверное, математиком того времени. Когда теория находилась в последней, финальной стадии доработки, Эйнштейн прочел в Гёттингене шесть двухчасовых лекций, на которых присутствовал и Гильберт. Эйнштейну по-прежнему недоставало некоторых математических инструментов (известных как «тождество Бьянки»), и это не позволяло ему вывести уравнения из простой формы, известной как «действие». Позже Гильберт заполнил пробел в вычислениях Эйнштейна, записал необходимое действие и опубликовал окончательный результат от своего имени, всего за шесть дней до Эйнштейна. Эйнштейн был недоволен. Более того, он решил, что Гильберт, осуществив последний шаг и приписав себе всю работу, пытался украсть у него общую теорию относительности. Со временем напряжение в отношениях между Эйнштейном и Гильбертом прошло, но Эйнштейн стал осторожнее и уже неохотно делился своими результатами. Сегодня действие, посредством которого выводится общая теория относительности, известно как «действие Эйнштейна – Гильберта». Вероятно, завершить теорию Эйнштейна последним крохотным шажком Гильберта побудило то, что, как он часто говорил, «физика слишком важна, чтобы оставлять ее физикам»; скорее всего, он имел в виду, что физики недостаточно сведущи в математике, чтобы исследовать тайны природы. Очевидно, взгляды Гильберта в этом отношении разделяли и остальные математики. Так, математик Феликс Клейн сетовал, что Эйнштейн по сути своей не математик, а работал под влиянием неведомых физико-философских импульсов. В этом и состоит, вероятно, принципиальная разница между математиками и физиками и причина того, что первые никогда не открывают новые законы природы. Математики имеют дело со множеством маленьких внутренне непротиворечивых областей, напоминающих изолированные провинции. Физики, напротив – с горсткой простых физических принципов, причем для разрешения любого из них может потребоваться множество математических символов. Хотя язык природы – это математика, ее движущей силой, похоже, являются эти самые физические принципы, такие как теория относительности и квантовая теория.

Распространение сообщения о новой теории гравитации Эйнштейна было прервано началом войны. Убийство в 1914 г. наследника австро-венгерского престола послужило поводом для кровопролитнейших событий того времени и втянуло Британскую, Австро-Венгерскую, Российскую и Прусскую империи в катастрофический конфликт, жертвами которого стали десятки миллионов молодых людей. Чуть ли не мгновенно тихие, достойные профессора германских университетов превратились в кровожадных националистов. Почти весь факультет Берлинского университета заразился военной лихорадкой и направил все свои усилия на войну. В поддержку кайзера девяносто три немецких интеллектуала подписали известный манифест «К цивилизованному миру», в котором призвали весь народ сплотиться вокруг кайзера и угрожающе заявили, что немецкий народ должен отразить «русские орды вкупе с монголами и неграми, которых натравливают на белую расу». Манифест оправдывал германское вторжение в Бельгию и гордо заявлял: «Немецкое войско и немецкий народ едины. Это сознание связывает сегодня семьдесят миллионов немцев без различия образования, положения и партийности». Даже благожелатель Эйнштейна Макс Планк подписал этот манифест вместе с известным математиком Феликсом Клейном и физиками Вильгельмом Рентгеном (открывшим рентгеновское излучение), Вальтером Нернстом и Вильгельмом Оствальдом.

Эйнштейн, убежденный пацифист, отказался подписать манифест. Георг Николаи, врач Эльзы и известный антивоенный активист, попросил сто других интеллектуалов подписать контрманифест, но из-за ошеломляющей военной истерии, охватившей Германию, только четверо действительно подписали его, и среди них Эйнштейн. Происходящее вызвало в нем тяжелое чувство. Он написал: «Европа в своем безумии совершила нечто невероятное, – и грустно добавил: – В такое время каждому становится ясно, к сколь жалкой породе животных принадлежит человек».

В 1916 г. мир Эйнштейна вновь покачнулся, на этот раз от поразительной вести о том, что его близкий друг-идеалист Фридрих Адлер – тот самый физик, который великодушно отказался от светившей ему профессорской должности в Цюрихском университете в пользу Эйнштейна, убил в переполненном венском ресторане австрийского премьер-министра графа Карла фон Штюргка с криком «Долой тиранию! Мы хотим мира!». Вся страна замерла, услышав, что сын основателя австрийской социал-демократической партии совершил такое неописуемое преступление против государства. Адлера тут же отправили в тюрьму, ему грозила смертная казнь. В ожидании суда он вновь обратился к любимому развлечению – физике и начал писать длинную статью, посвященную критике эйнштейновой теории относительности. В центре переполоха, возникшего в связи с убийством премьер-министра и его потенциальными последствиями, он целиком отдался мысли о том, что ему удалось отыскать в теории относительности критическую ошибку!

Отец Адлера Виктор ухватился за единственную стратегию защиты, доступную его сыну. Понимая, что душевная болезнь передается по наследству, Виктор объявил, что его сын психически неуравновешен, и попросил о снисхождении. В качестве доказательства безумия Виктор указал, что его сын пытался опровергнуть общепринятую теорию относительности Эйнштейна. Сам Эйнштейн предложил выступить в суде с показаниями о поведении и репутации Адлера-младшего, но его так и не вызвали.

Первоначально суд признал Адлера виновным и приговорил к смерти через повешение, однако позже приговор заменили на пожизненное заключение, отчасти благодаря петициям Эйнштейна и других представителей общественности. (По иронии судьбы в 1918 г., когда после Первой мировой войны правительство рухнуло, Адлер был освобожден; даже избран в Австрийскую национальную ассамблею и стал одной из самых популярных фигур в рабочем движении.)

Поделиться:
Популярные книги

Кодекс Крови. Книга VIII

Борзых М.
8. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VIII

Камень

Минин Станислав
1. Камень
Фантастика:
боевая фантастика
6.80
рейтинг книги
Камень

Партиец

Семин Никита
2. Переломный век
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Партиец

Он тебя не любит(?)

Тоцка Тала
Любовные романы:
современные любовные романы
7.46
рейтинг книги
Он тебя не любит(?)

Бестужев. Служба Государевой Безопасности

Измайлов Сергей
1. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности

Хозяйка брачного агентства или Попаданка в поисках любви

Максонова Мария
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка брачного агентства или Попаданка в поисках любви

Возрождение Феникса. Том 1

Володин Григорий Григорьевич
1. Возрождение Феникса
Фантастика:
фэнтези
попаданцы
альтернативная история
6.79
рейтинг книги
Возрождение Феникса. Том 1

Релокант. Вестник

Ascold Flow
2. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. Вестник

Книга пяти колец. Том 3

Зайцев Константин
3. Книга пяти колец
Фантастика:
фэнтези
попаданцы
аниме
5.75
рейтинг книги
Книга пяти колец. Том 3

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Идеальный мир для Социопата 6

Сапфир Олег
6. Социопат
Фантастика:
боевая фантастика
рпг
6.38
рейтинг книги
Идеальный мир для Социопата 6

Камень. Книга 3

Минин Станислав
3. Камень
Фантастика:
фэнтези
боевая фантастика
8.58
рейтинг книги
Камень. Книга 3

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Неудержимый. Книга XIX

Боярский Андрей
19. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIX