Чтение онлайн

на главную

Жанры

Космос Эйнштейна. Как открытия Альберта Эйнштейна изменили наши представления о пространстве и времени
Шрифт:

Эйнштейн всегда стремился подстраховать свои ставки. Если бы теория Калуцы – Клейна оказалась ошибочной, ему пришлось бы искать новый путь к созданию единой теории поля. Он решил исследовать различные геометрии за пределами геометрии Римана. Он расспросил математиков и быстро понял, что эта область – совершенно непаханое поле. Более того, по настоянию Эйнштейна многие математики начали изучать «постримановы» геометрии, или «теорию связей», чтобы помочь ему исследовать новые возможные вселенные. Вследствие этого вскоре были созданы новые геометрии с участием «скручивания» и «скрученных пространств». (Эти абстрактные пространства нашли применение в физике лишь через 70 лет, после появления теории суперструн.)

Тем не менее работа над постримановыми геометриями стала настоящим кошмаром. У Эйнштейна не было руководящего физического принципа, который помог бы ему пробиться через чащу абстрактных уравнений. Прежде он использовал

в качестве компаса принцип эквивалентности и общую ковариантность. То и другое прочно опиралось на экспериментальные данные. В поисках пути он полагался также на физические картины. Однако в случае единой теории поля у Эйнштейна не было ведущего физического принципа или картины.

Мир так жаждал новостей об успехах Эйнштейна, что доклад о продвижении работы над единой теорией поля, подготовленный им для Прусской академии, был передан в The New York Times, которая даже опубликовала некоторые его части. Очень скоро вокруг дома Эйнштейна собрались сотни репортеров в надежде хотя бы мельком увидеть гения. Эддингтон писал: «Может быть, вам будет забавно узнать, что один из крупных магазинов здесь в Лондоне (Selfridges) поместил вашу статью в своей витрине (шесть страничек наклеены бок о бок), так чтобы прохожие могли прочитать ее целиком. Вокруг собираются большие толпы». Однако Эйнштейн с радостью променял бы все обожание и громкие похвалы на простой физический образ, которым он мог бы руководствоваться в своей работе.

Некоторые физики начали намекать на то, что Эйнштейн находится на ложном пути и что ему отказала физическая интуиция. Одним из критиков стал друг и коллега Эйнштейна Вольфганг Паули – один из пионеров квантовой теории, знаменитый в научных кругах своим безжалостным остроумием. Однажды он сказал о неудачной физической статье: «Она даже не ошибочна». Коллеге, статью которого он рецензировал, он сказал: «Меня не волнует тот факт, что вы думаете медленно, но я возражаю, когда вы публикуетесь быстрее, чем думаете». Услышав путаное и непоследовательное выступление на семинаре, он мог сказать: «То, что вы сказали, было настолько невразумительным, что невозможно было понять, чепуха это или нет». Когда коллеги-физики жаловались на то, что Паули слишком критичен в своих высказываниях, он отвечал: «У некоторых людей очень чувствительные мозоли, и единственный способ жить с ними заключается в том, чтобы наступать на эти мозоли до тех пор, пока они не привыкнут». Впечатление Паули о единой теории поля отразилось в его знаменитом комментарии примерно следующего содержания: что Бог разорвал, человек да не соединит. (По иронии судьбы позже Паули тоже подхватил эту болезнь и предложил собственную версию единой теории поля.)

Под мнением Паули могли бы подписаться многие коллеги-физики, которые все глубже погружались в квантовую теорию – еще одну великую теорию XX в. Квантовая теория, несомненно, может быть признана одной из самых успешных физических теорий всех времен. В объяснении загадок внутреннего мира атома она достигла беспримерных успехов и тем самым помогла человеку реализовать мощь лазеров, современной электроники, компьютеров и нанотехнологий. Однако, как ни странно, фундамент квантовой теории опирается на зыбучие пески. В атомном мире электроны, судя по всему, умеют находиться в двух местах одновременно, прыгать с орбиты на орбиту без предупреждения и исчезать в никуда, уходя в призрачный мир между бытием и небытием. Как заметил Эйнштейн еще в 1912 г., «чем больших успехов достигает квантовая теория, тем глупее она выглядит».

Кое-какие диковинные свойства квантового мира были выявлены в 1924 г., когда Эйнштейну написал любопытное письмо никому не известный индийский физик Шатьендранат Бозе, работы которого по статистической физике выглядели настолько странно, что их с ходу отвергали все серьезные научные журналы. Бозе предлагал расширить более раннюю работу Эйнштейна по статистической механике, чтобы получить полный квантовомеханический анализ газа, в котором атомы газа рассматриваются как квантовые объекты. Точно так же, как сам Эйнштейн расширил работу Планка по теории света, Бозе намекал на то, что можно расширить работу Эйнштейна, превратив ее в полномасштабную квантовую теорию атомов в составе газа. Эйнштейн, знаток предмета, обнаружил, что, хотя Бозе сделал в своей работе немало ошибок и предположений, ничем в реальности не оправданных, его конечный результат представляется корректным. Эйнштейн был настолько заинтригован этой работой, что перевел ее на немецкий и отправил в печать.

Затем он расширил работу Бозе и написал собственную статью, в которой рассмотрел результат в приложении к чрезвычайно холодному веществу на грани абсолютного нуля. Бозе и Эйнштейн обнаружили занятный факт квантового мира: все его атомы неразличимы; это значит, что невозможно, как надеялись Больцман и Максвелл, пометить каждый конкретный

атом. Если камни, деревья и другие обычные материальные предметы можно пометить и назвать собственными именами, в квантовом мире все атомы водорода идентичны в любом эксперименте; не существует зеленых, синих или желтых атомов водорода. Затем Эйнштейн обнаружил, что, если некий набор атомов охладить почти до абсолютного нуля, где они почти прекращают всякое движение, все атомы провалятся в минимальное энергетическое состояние, образовав при этом единый «суператом». Эти атомы конденсируются в одном и том же квантовом состоянии и будут вести себя практически как один гигантский атом. По существу, Эйнштейн предположил наличие совершенно нового, никогда прежде на Земле не виданного состояния вещества. Однако прежде, чем атомы смогут провалиться в состояние с минимальной энергией, необходимо достичь фантастически низкой температуры – слишком низкой, чтобы ее можно было наблюдать экспериментально; речь идет о температуре порядка одной миллионной доли градуса выше абсолютного нуля. (При такой чрезвычайно низкой температуре атомы колеблются в унисон, и тонкие квантовые эффекты, которые обычно наблюдаются лишь на уровне отдельных атомов, теперь распределяются по всему конденсату. Подобно зрителям на футбольном матче, формирующим «живую волну», которая пробегает по трибунам, когда люди на них вместе встают и садятся, атомы в «конденсате Бозе – Эйнштейна» ведут себя так, будто все колеблется в унисон.) Эйнштейн, конечно, не надеялся при жизни увидеть реальный конденсат Бозе – Эйнштейна, поскольку технологии 1920-х гг. не позволяли проводить эксперименты при температурах около абсолютного нуля. (Эйнштейн настолько обогнал свое время, что должно было пройти около 70 лет, прежде чем ученые смогли проверить это его предсказание.)

Помимо конденсата Бозе – Эйнштейна последнего интересовал вопрос о том, приложим ли его принцип двойственности не только к свету, но и к веществу. В лекции 1909 г. Эйнштейн показал, что свет имеет двойственную (дуалистическую) природу и может одновременно проявлять свойства частицы и волны. Несмотря на еретический характер идеи, экспериментальные результаты ее полностью подтвердили. Вдохновившись идеями Эйнштейна, молодой выпускник университета герцог Луи де Бройль в 1923 г. пошел еще дальше и предположил, что свойствами одновременно частицы и волны может обладать даже сама материя. Эта концепция была дерзкой и революционной, поскольку представление о том, что материя состоит из частиц, укоренилось уже очень глубоко. Но де Бройль, вдохновившись работами Эйнштейна о дуальности, сумел объяснить некоторые загадки атома при помощи предположения о том, что материя тоже обладает волнообразными свойствами.

Эйнштейну понравилась дерзость «вещественных волн» де Бройля, и он начал продвигать теорию коллеги. (Позже де Бройль был удостоен Нобелевской премии за эту плодотворную идею.) Но если вещество обладает волнообразными свойствами, то какому уравнению подчиняются эти волны? Специалисты по классической физике давно и хорошо научились записывать такие уравнения для различных волн – океанских, звуковых и других, поэтому австрийский физик Эрвин Шрёдингер решил записать уравнение для предложенных де Бройлем волн материи. Отдыхая во время Рождества 1925 г. с одной из бесчисленных подружек на вилле Хервиг в швейцарском городке Ароса, Шрёдингер, известный ловелас, умудрился отвлечься достаточно надолго, чтобы сформулировать уравнение, которое очень скоро стало одним из самых знаменитых уравнений всей квантовой физики, – волновое уравнение Шрёдингера. Биограф Шрёдингера Вальтер Мур писал: «Подобно таинственной даме, вдохновлявшей Шекспира на сонеты, леди из Аросы может навсегда остаться неизвестной». (К несчастью, у Шрёдингера в жизни было так много подружек и любовниц, а также незаконных детей, что невозможно определить точно, кто послужил музой для этого исторического уравнения.)

В следующие несколько месяцев Шрёдингер написал замечательную серию статей, в которых показал, что загадочные правила, установленные Нильсом Бором для атома водорода, без особого труда выводятся из его уравнения. Впервые физики получили подробную картину внутреннего устройства атома, при помощи которой можно, в принципе, рассчитать свойства сложных атомов и даже молекул. Всего за несколько месяцев новая квантовая теория стала всесокрушающей силой; она разрешила многие сложнейшие вопросы об атомном мире и разгадала величайшие загадки, которые со времен древних греков ставили ученых в тупик. Внезапно появилась возможность рассчитать «танец» электронов, которые перемещаются между орбитами, испускают световые импульсы или связывают атомы в молекулы; это стало вопросом решения стандартных дифференциальных уравнений в частных производных. Один дерзкий молодой квантовый физик, Поль-Адриен-Морис Дирак, даже похвастался, что всю химию можно будет объяснить при помощи решений уравнения Шрёдингера и химия таким образом сведется к прикладной физике.

Поделиться:
Популярные книги

Возвышение Меркурия. Книга 12

Кронос Александр
12. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 12

Кодекс Охотника. Книга XXIV

Винокуров Юрий
24. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXIV

Буря империи

Сай Ярослав
6. Медорфенов
Фантастика:
аниме
фэнтези
фантастика: прочее
эпическая фантастика
5.00
рейтинг книги
Буря империи

Месть за измену

Кофф Натализа
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть за измену

Деспот

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Деспот

Осознание. Пятый пояс

Игнатов Михаил Павлович
14. Путь
Фантастика:
героическая фантастика
5.00
рейтинг книги
Осознание. Пятый пояс

Тринадцатый VII

NikL
7. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый VII

Эра мангуста. Том 4

Третьяков Андрей
4. Рос: Мангуст
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эра мангуста. Том 4

Ветер перемен

Ланцов Михаил Алексеевич
5. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ветер перемен

Приручитель женщин-монстров. Том 11

Дорничев Дмитрий
11. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 11

На границе империй. Том 7

INDIGO
7. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
6.75
рейтинг книги
На границе империй. Том 7

Прометей: владыка моря

Рави Ивар
5. Прометей
Фантастика:
фэнтези
5.97
рейтинг книги
Прометей: владыка моря

Бракованная невеста. Академия драконов

Милославская Анастасия
Фантастика:
фэнтези
сказочная фантастика
5.00
рейтинг книги
Бракованная невеста. Академия драконов

Кодекс Охотника. Книга XXII

Винокуров Юрий
22. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXII