Космос Эйнштейна. Как открытия Альберта Эйнштейна изменили наши представления о пространстве и времени
Шрифт:
Так Эйнштейн, отец «старой квантовой теории» фотона, стал крестным отцом «новой квантовой теории», основанной на этих волнах Шрёдингера. (Заучивая конфигурацию забавных орбиталей, окружающих ядро, с их странными названиями и «квантовыми числами», сегодняшние студенты-химики на самом деле зубрят решения волнового уравнения Шрёдингера.) Посыпались эпохальные открытия в квантовой физике. Осознав, что уравнение Шрёдингера не учитывает относительности, Дирак всего через два года обобщил его, превратив в полностью релятивистскую теорию электронов, и мир физики вновь был поражен. Если знаменитое уравнение Шрёдингера не учитывало релятивистских эффектов и было применимо лишь к электронам, которые движутся медленно в сравнении со светом, то электроны Дирака подчинялись полной эйнштейновой симметрии. Более того, уравнение Дирака автоматически объясняло некоторые необычные свойства электрона, включая и так называемый спин. Из более ранних экспериментов Отто Штерна и Вальтера Герлаха было известно, что электрон ведет себя в магнитном поле как вращающийся волчок с угловым моментом кратным 1/2 (в единицах постоянной Планка). Электрон Дирака показывал спин в точности равный 1/2, что соответствовало результатам эксперимента
Затем Дирак сделал еще один шаг вперед. Взглянув внимательнее на энергию этих электронов, он обнаружил, что Эйнштейн просмотрел одно из решений своих собственных уравнений. Обычно, извлекая из числа корень квадратный, мы берем и положительное, и отрицательное решение. К примеру, корень квадратный из 4 может быть равен либо 2, либо –2. Эйнштейн в своих уравнениях не принимал во внимание квадратные корни, поэтому его знаменитое уравнение E = mc2 было не совсем верным. Корректно было бы написать E = ±mc2. Этот дополнительный минус, утверждал Дирак [23] , говорит о возможном существовании нового типа зеркальной вселенной – такой вселенной, где частицы могли бы существовать в новой форме «антивещества». Как ни странно, несколькими годами ранее, в 1925 г., Эйнштейн и сам обдумывал идею антивещества; он показал, что при смене знака заряда электрона в релятивистском уравнении и одновременном изменении ориентации пространства на обратную можно получить точно такие же уравнения. Он показал, что для каждой частицы определенной массы должна существовать другая частица той же массы с противоположным зарядом. Теория относительности не только дала нам четвертое измерение, но и привела в параллельный мир антивещества. Однако Эйнштейн, никогда не вступавший в тяжбы по поводу приоритетов, был великодушен и никогда не оспаривал первенство Дирака.
23
Поскольку вещество предпочитает находиться в состоянии с минимальной энергией, это означало, что все электроны имели бы возможность провалиться в состояние с отрицательной энергией, и Вселенная схлопнулась бы. Чтобы «предотвратить» такую катастрофу, Дирак постулировал, что все отрицательные энергетические состояния уже заполнены. Проходящий гамма-квант может выбить электрон из состояния с отрицательной энергией, оставив на его месте «дырку», или пузырек. Эта дырка, предсказывал Дирак, будет вести себя как электрон с положительным зарядом, то есть как антивещество. – Прим. авт.
Поначалу радикальные идеи Дирака были встречены яростным скепсисом. Мысль о целой вселенной зеркальных частиц, возникающих из уравнения E = ±mc2, представлялась слишком уж необычной. Квантовый физик Вернер Гейзенберг (вместе с Нильсом Бором он независимо нашел формулировку квантовой теории, эквивалентную формулировке Шрёдингера) писал: «Самой грустной главой современной физики была и остается теория Дирака… Я считаю теорию Дирака… ученой чепухой, которую никто не может рассматривать серьезно». Однако физикам пришлось проглотить свое самолюбие, когда антиэлектрон, или позитрон, в 1932 г. был наконец обнаружен, за что Дирак позже получил Нобелевскую премию. Гейзенберг в конце концов признал: «Я считаю, что открытие антивещества – крупнейший, возможно, скачок из всех крупных скачков нашего столетия». Вновь теория относительности принесла ученым нежданные богатые плоды, подарив нам на этот раз целую новую вселенную из антивещества. Кажется странным, что Шрёдингер и Дирак, разработавшие две важнейших волновых функции квантовой теории, были настолько противоположны друг другу по характеру. Если Шрёдингер всюду появлялся в сопровождении какой-нибудь дамы, то Дирак был болезненно стеснителен в общении с женщинами и чрезвычайно немногословен. После смерти Дирака британцы, отмечая его вклад в науку, выгравировали уравнение Дирака на камне в Вестминстерском аббатстве, недалеко от могилы Ньютона.
Вскоре физики во всех институтах планеты принялись зубрить странные и красивые строки уравнений Шрёдингера и Дирака. Однако, несмотря на все неоспоримые успехи, квантовая физика по-прежнему не могла одолеть волнительный философский вопрос: если вещество есть волна, то что именно колеблется? Этот же вопрос в свое время не давал покоя волновой теории света, породившей ошибочную теорию эфира. Волна Шрёдингера подобна океанской волне; предоставленная сама себе, – постепенно разбегается. Если дать ей достаточно времени, волновая функция рассеется по всей Вселенной. Однако это противоречило всему, что физики знали об электронах. Элементарные частицы считались точечными объектами, оставлявшими за собой вполне определенный след, напоминающий инверсионный след самолета, который можно сфотографировать на пленку. Таким образом, хотя квантовые волны чудесным образом описывали атом водорода, казалось невозможным, чтобы волна Шрёдингера могла описать электрон, движущийся в свободном пространстве. Более того, если бы волна Шрёдингера действительно представляла электрон, то он медленно распределился бы по пространству, а Вселенная – растворилась.
Что-то было не так. В конце концов, давний друг Эйнштейна Макс Борн предложил одно из самых противоречивых решений этой загадки. В 1926 г. Борн сделал к тому решительный шаг, предположив, что волновая функция Шрёдингера описывает вовсе не электрон, но лишь вероятность нахождения электрона. Он заявил, что «движение частиц подчиняется законам вероятности, но вероятность и сама подчиняется законам причинности». В этой новой картине вещество действительно состояло из частиц, а не волн. Следы, запечатленные на фотопластинках, оставлены точечными частицами, а не волнами. Но шанс на нахождение частицы в любой заданной точке задается волновой функцией. (Точнее,
Тогда Вернер Гейзенберг сделал еще один шаг. Вместе с Нильсом Бором он без конца мучился над загадкой вероятностей, наполнявших новую теорию, и часто вступал со старшим коллегой в горячие споры. Однажды после бессонной ночи и очередных мучительных попыток разобраться с этим вопросом он вышел на долгую прогулку в Феллед-парк за университетом. Вернер непрерывно задавал себе вопрос: как так может быть, что никто не знает точное положение электрона в пространстве. Как может положение электрона быть неопределенным, по утверждению Борна, если его можно попросту измерить?
Затем его внезапно осенило. Все стало ясно. Чтобы узнать, где находится электрон, вы должны взглянуть на него. Это означает направить на него луч света. Но фотоны светового луча будут сталкиваться с электроном, делая его положение неопределенным. Иными словами, акт наблюдения непременно вводит в ситуацию неопределенность. Он переформулировал этот вопрос в новый принцип физики – принцип неопределенности, согласно которому невозможно определить одновременно положение и скорость частицы. (Точнее, произведение неопределенностей положения и импульса должно быть больше или равно постоянной Планка, деленной на 4.) И это не просто результат несовершенства наших инструментов; это фундаментальный закон природы. Даже Бог не мог бы установить для электрона одновременно точное положение в пространстве и импульс.
Это был решительный момент: квантовая теория погрузилась в совершенно не изведанные глубины. До этого момента можно было утверждать, что квантовые эффекты носят статистический характер, представляя усредненное движение триллионов электронов. Теперь же оказывалось, что даже движение одного-единственного электрона точно определить невозможно.
Эйнштейн пришел в ужас. Узнав, что его добрый друг Макс Борн отказывается от детерминизма – одной из самых почитаемых идей в классической физике, он почувствовал себя едва ли не преданным. Детерминизм, по существу, утверждает, что, зная все о настоящем, можно определить будущее. Так, великий вклад Ньютона в физику состоял в том, что он научился, зная текущее состояние Солнечной системы, предсказывать движение комет, планет и спутников при помощи своих законов движения. На протяжении нескольких столетий физики поражались точности ньютоновых законов, позволявших предсказать положение небесных тел, в принципе, на миллионы лет вперед. Фактически до того момента вся наука основывалась на детерминизме, то есть ученый, зная положение и скорости всех частиц, всегда мог предсказать результат эксперимента. Последователи Ньютона подытожили это убеждение, сравнив Вселенную с гигантскими часами. Бог завел эти часы в начале времен, и они равномерно тикают с тех самых пор, подчиняясь законам движения Ньютона. Если бы вы знали положение и скорость каждого атома во Вселенной, то могли бы, воспользовавшись ньютоновыми законами движения, рассчитать дальнейшую эволюцию Вселенной с бесконечной точностью. Однако принцип неопределенности перечеркнул все это; оказалось, что предсказать будущее состояние Вселенной невозможно. Для атома урана, к примеру, невозможно рассчитать момент распада, но только вероятность этого события. Мало того, даже Бог или любое божество не знает, когда распадется данный конкретный атом урана.
В декабре 1926 г., отзываясь на статью Борна, Эйнштейн написал: «Квантовая механика заслуживает большого уважения. Но внутренний голос подсказывает мне, что это еще не идеал. Эта теория многое открывает, но все же не приближает нас к разгадке тайны Всевышнего. Что касается меня, то я по крайней мере убежден, что Он не бросает кости». Говоря о теории Гейзенберга, Эйнштейн заметил: «Гейзенберг отложил большое квантовое яйцо. В Гёттингене в него верят (я – нет)». Самому Шрёдингеру новая интерпретация его уравнения очень не понравилась. Он однажды даже сказал, что если его уравнение описывает только вероятности, то ему жаль, что он имеет к нему какое-то отношение. Эйнштейн добавил от себя, что он предпочел бы стать «сапожником или крупье в казино», если бы знал заранее, что квантовая революция, началу которой он способствовал, введет в физику фактор случайности.
Физики начинали разделяться на два лагеря [24] . Предводителем одного лагеря стал Эйнштейн; ученые этого лагеря по-прежнему верили в детерминизм – концепцию, восходившую к самому Ньютону и несколько столетий служившую физикам путеводной звездой в их исследованиях. Союзниками Эйнштейна стали Шрёдингер и де Бройль. Лидером другого, гораздо более многочисленного лагеря стал Нильс Бор, который верил в неопределенность и продвигал новую версию причинности, основанную на средних значениях и вероятностях.
24
Эйнштейн очень ясно изложил свою позицию по детерминизму и неопределенности: «Я детерминист, вынужденный действовать так, как будто свободная воля существует, потому что, если я хочу жить в цивилизованном обществе, я должен действовать соответственно. Я знаю, что с философской точки зрения убийца не виноват в своих действиях, но я не стал бы с ним чаевничать… У меня нет никакой власти, в первую очередь над этими загадочными железами, в которых природа готовит самую суть жизни. Генри Форд может называть это своим Внутренним Голосом, Сократ – своим демоном: каждый человек по-своему объясняет тот факт, что человеческая воля не свободна… И начало, и конец – все определено силами, над которыми мы не властны. Все определено в равной степени для насекомого и для звезды. Люди, овощи или космическая пыль – все мы танцуем под загадочный ритм, исполняемый в отдалении невидимым музыкантом». – Прим. авт.