Краткая история времени. От большого взрыва до черных дыр
Шрифт:
При таком скудном количестве черных дыр могло бы показаться неправдоподобным, чтобы какая-нибудь из них оказалась очень близко от нас и ее можно было бы наблюдать как некий отдельный источник гамма-излучения. Но поскольку под действием гравитации первичные черные дыры должны притягиваться к любому веществу, их должно быть гораздо больше внутри и вокруг галактик. Следовательно, хотя вычисленный фон гамма-излучения говорит о том, что в одном кубическом световом году не может быть в среднем больше 300 первичных черных дыр, он не дает никакой информации о том, насколько часто первичные черные дыры встречаются в нашей собственной Галактике. Если бы их было, скажем, в миллион раз больше, то ближайшая к нам черная дыра могла оказаться на расстоянии тысячи миллионов километров, т. е. примерно на уровне Плутона, самой далекой из известных планет. На таком расстоянии все равно очень трудно зарегистрировать постоянное излучение черной дыры, даже если его мощность равна десяти тысячам мегаватт. Для наблюдения первичной черной дыры требуется зарегистрировать несколько гамма-квантов,
Разумеется, если бы черная дыра, находящаяся на расстоянии Плутона, закончив свой жизненный цикл, взорвалась, последний всплеск излучения можно было бы с легкостью зарегистрировать. Но если черная дыра продолжает излучать в течение последних десяти или двадцати тысяч миллионов лет, то шансы на то, что ее гибель придется на ближайшие несколько лет, а не на те несколько миллионов лет, что уже прошли или еще наступят, действительно очень малы! Значит, чтобы иметь реальную возможность увидеть взрыв до окончания финансирования эксперимента, вы должны придумать, как регистрировать взрывы, происходящие на расстоянии порядка одного светового года. Вам все равно будет нужен большой детектор гамма-излучения, чтобы зарегистрировать несколько гамма-квантов из тех, что образуются при взрыве. Но в этом случае отпадает необходимость проверять, что все гамма-кванты приходят с одной и той же стороны: достаточно будет знать, что все они зарегистрированы в течение очень короткого промежутка времени, чтобы быть уверенным в том, что их источником является одна и та же вспышка.
Один из детекторов гамма-излучения, с помощью которого можно было бы опознавать первичные черные дыры, – это вся атмосфера Земли. (Во всяком случае, вряд ли нам удастся построить детектор большего размера!) Когда гамма-квант, обладающий высокой энергией, сталкивается в земной атмосфере с атомами, рождаются пары из электронов и позитронов (антиэлектронов), которые в свою очередь сталкиваются с атомами и образуют новые электронно-позитронные пары. Возникает так называемый электронный ливень. Связанное с ним излучение представляет собой один из видов светового и называется черенковским. Поэтому вспышки гамма-излучения можно регистрировать, следя за световыми вспышками в ночном небе. Существуют, конечно, и другие явления (такие, как молния и отражение света от крутящихся спутников и обращающихся по орбитам ступеней ракет-носителей), которые тоже сопровождаются вспышками на небе. Вспышки, обусловленные гамма-излучением, можно отличить от этих явлений, проводя наблюдения одновременно из двух или большего числа пунктов, сильно удаленных друг от друга. Такие поиски предприняли в Аризоне двое ученых из Дублина, Нил Портер и Тревор Уикс. С помощью телескопов они обнаружили несколько вспышек, но ни одну из них нельзя было с определенностью приписать всплескам гамма-излучения первичных черных дыр.
Даже если поиск первичных черных дыр даст отрицательные результаты, а он может их дать, мы все равно получим важную информацию об очень ранних стадиях развития Вселенной. Если ранняя Вселенная была хаотической, или нерегулярной, или если давление материи было мало, можно было бы ожидать образования значительно большего числа черных дыр, чем тот предел, который нам дали наблюдения фона гамма-излучения. Объяснить, почему черные дыры не существуют в таком количестве, в котором их можно было бы наблюдать, можно лишь в том случае, если ранняя Вселенная была очень гладкой и однородной, с высоким давлением вещества.
Вывод о том, что черные дыры могут испускать излучение, был первым предсказанием, которое существенным образом основывалось на обеих великих теориях нашего века – общей теории относительности и квантовой механике. Вначале этот вывод встретил сильное противодействие, так как шел вразрез с распространенным представлением: «Как черная дыра может что бы то ни было излучать?» Когда я впервые объявил о своих результатах на конференции в Резерфордовской лаборатории под Оксфордом, все к ним отнеслись недоверчиво. В конце доклада председатель секции Джон Тейлор из Королевского колледжа в Лондоне заявил, что все это чепуха. Он даже написал статью, чтобы доказать, что я не прав. Но в конце концов большинство, в том числе и Джон Тейлор, пришли к выводу, что черные дыры должны излучать как горячее тело, если только верны все остальные представления общей теории относительности и квантовой механики. Таким образом, хотя нам и не удалось отыскать первичную черную дыру, но если бы вдруг это удалось, то, по довольно общему убеждению, черная дыра должна была бы испускать мощное гамма– и рентгеновское излучение.
Вывод о существовании излучения, испускаемого черными дырами, по-видимому, означает, что гравитационный коллапс не так уж окончателен и необратим, как мы думали раньше. Если астронавт упадет в черную дыру, то ее масса увеличится, но в конце концов количество энергии, эквивалентное этой прибавке массы, вернется во Вселенную в форме излучения. Следовательно, в каком-то смысле астронавт будет «регенерирован». Это, конечно, не самый лучший вид бессмертия: собственное представление о времени у астронавта почти наверняка пропадет, когда oн разлетится на клочки внутри черной дыры! Даже частицы, испущенные черной дырой для компенсации массы астронавта, будут не теми, из которых он состоял: единственное свойство астронавта, которое сохранится, – это его масса или энергия.
Приближения, которыми я пользовался в расчетах излучения черных дыр, должны хорошо выполняться, когда масса черной дыры превышает доли грамма, но они неприменимы в конце жизни черной дыры, когда ее масса становится очень малой. По-видимому, наиболее вероятный исход – это просто исчезновение черной дыры, по крайней мере из нашей области Вселенной. Исчезнув, она унесет с собой и астронавта, и любую сингулярность, которая могла бы в ней оказаться. Это было первое указание на возможность устранения квантовой механикой сингулярностей, предсказываемых общей теорией относительности. Однако те методы, которыми и я, и другие ученые пользовались в 1974 г., не могли дать ответы на такие вопросы, как, например, появятся ли сингулярности в квантовой гравитации. Поэтому начиная с 1975 г. я занялся разработкой более действенного подхода к квантовой гравитации, основанного на фейнмановском суммировании по историям (траекториям). Ответы, полученные при таком подходе, на вопросы о происхождении и судьбе Вселенной и того, что в ней находится, например астронавтов, будут изложены в двух следующих главах. Мы увидим, что хотя принцип неопределенности налагает ограничения на точность всех наших предсказаний, он зато устраняет фундаментальную непредсказуемость, возникающую в сингулярности пространства-времени.
8. Рождение и гибель Вселенной
В общей теории относительности Эйнштейна, самой по себе, делается вывод, что пространство-время возникло в сингулярной точке большого взрыва, а свой конец оно должно находить в сингулярной точке большого хлопка (если коллапсирует вся Вселенная) и в сингулярности внутри черной дыры (если коллапсирует какая-нибудь локальная область типа звезды). Любое вещество, упавшее в такую дыру, в сингулярности должно разрушиться, и снаружи будет ощущаться лишь гравитационное воздействие его массы. Когда же были учтены квантовые эффекты, то оказалось, что масса и энергия вещества в конце концов должны, по-видимому, возвращаться оставшейся части Вселенной, а черная дыра вместе со своей внутренней сингулярностью должна испариться и полностью исчезнуть. Будет ли столь же большим влияние квантовой механики на сингулярности в точках большого взрыва и большого хлопка? Что в действительности происходит на очень ранних и очень поздних стадиях развития Вселенной, когда гравитационные поля настолько сильны, что нельзя пренебрегать квантовыми эффектами? Есть ли действительно у Вселенной начало и конец? А если есть, то каковы они?
На протяжении семидесятых годов я в основном занимался исследованием черных дыр, но в 1981 г., когда я был на конференции по космологии, организованной в Ватикане отцами-иезуитами, во мне опять проснулся интерес к вопросу о возникновении и гибели Вселенной. Католическая Церковь совершила большую ошибку в своих взаимоотношениях с Галилеем, когда, пытаясь подчинить закону вопрос науки, объявила, что Солнце обращается вокруг Земли. Теперь, через века, Церковь решила пригласить специалистов и получить у них консультацию по космологии. В конце конференции участники были удостоены аудиенции Папы. Он сказал, что эволюцию Вселенной после большого взрыва изучать можно, но не следует вторгаться в сам большой взрыв, потому что это был момент Сотворения и, следовательно, Божественный акт. Я был очень рад, что Папа не знал темы только что сделанного мной доклада о возможности того, что пространство-время конечно не имеет границ, т. е. что оно не имеет начала, а значит, нет и момента Сотворения. Мне не хотелось разделять судьбу Галилея, с которым, мне кажется, у меня есть что-то общее, хотя бы то, что по странному совпадению я родился точно через 300 лет после его смерти!
Чтобы было ясно, какими были мои мысли и мысли других о возможном влиянии квантовой механики на наши взгляды на рождение и гибель Вселенной, необходимо сначала напомнить общепринятую картину истории Вселенной, основанную на так называемой горячей модели большого взрыва. В ней считается, что Вселенная от наших дней до большого взрыва описывается одной из моделей Фридмана. В подобных моделях оказывается, что по мере расширения Вселенной вещество и излучение в ней охлаждаются. (С удвоением размеров Вселенной ее температура становится вдвое ниже). Поскольку температура – это просто мера энергии (т. е. скорости) частиц, охлаждение Вселенной должно сильно воздействовать на вещество внутри нее. При очень высоких температурах частицы движутся так быстро, что могут противостоять любому взаимному притяжению, вызванному ядерными или электромагнитными силами, но при охлаждении можно ожидать, что некоторые частицы будут притягиваться друг к другу и начнут сливаться. Более того, даже типы частиц, существующих во Вселенной, должны зависеть от температуры. При достаточно высоких температурах энергия частиц столь велика, что при любом столкновении образуется много разных пар частица-античастица, и, хотя некоторая доля этих частиц аннигилирует, сталкиваясь с античастицами, их образование происходит все равно быстрее аннигиляции. Но при более низких температурах, когда энергия сталкивающихся частиц меньше, пары частица-античастица будут образовываться медленнее и аннигиляция частиц будет происходит быстрее рождения.