Кто ест пчел? 101 ответ на, вроде бы, идиотские вопросы
Шрифт:
Йохан Уис (Белвиль, ЮАР)
Крепкое вино
Недавно я отдыхала на острове Мадейра, у берегов Африки, и там узнала, что бутылки с мадерой — крепленым вином типа портвейна и хереса — следует хранить в вертикальном положении. Вино в бутылках, хранимых таким образом, пригодно для употребления даже спустя несколько веков после его изготовления. Однако бутылки с винами большинства других сортов следует хранить в лежачем положении, чтобы пробка оставалась влажной и неповрежденной. Чем мадера отличается от других вин, ведь ее пробка тоже может высохнуть?
Бутылки с мадерой многолетней выдержки не нужно хранить в вертикальном положении. Другое дело, что мадера, в отличие от других вин, от этого не испортится. Для вина, разлитого в бутылки, главный враг — кислород. Кислород окисляет вино, и в результате у вина появляется неприятный запах и вкус. Предназначение пробки заключается в том, чтобы препятствовать проникновению в бутылку кислорода. Допустимо лишь небольшое количество кислорода в области горлышка. Но пробки имеют тенденцию высыхать
Эдвард Хоббс (эксперт по вину Уэлсли-колледжа, Массачусетс, США)
Марочная мадера вполне способна пережить свою пробку. Поэтому, чтобы вино не портилось, через каждые несколько десятилетий бутылки с мадерой закупоривают заново. Некоторые поставщики даже указывают на этикетках не только год сбора винограда и его сорт, но и даты перезакупорки. Поскольку это уже окислившееся вино, нет опасности, что повторное закупоривание может ему как-то повредить, чего нельзя сказать о портвейне, хересе и некрепленых винах. Способ специального окисления мадеры был открыт случайно. Бочки с мадерой долго путешествовали по теплым морям на корабле, направлявшемся в Новый Свет, а после выяснилось, что за время плавания у вина улучшились и цвет, и вкус. На протяжении веков в целях улучшения букета вина производители продолжали отправлять бочки с мадерой на кораблях в качестве балласта. Теперь производители вина просто выдерживают бочки в течение трех месяцев при тропической температуре (порой достигающей 50°C) на верхних этажах складов, находящихся на острове Мадейра.
Марк Макгроу (Челтнем, Великобритания)
Длина соломинки
Насколько длинной может быть соломинка, через которую пьют кока-колу?
Если создать абсолютный вакуум над нелетучей жидкостью, максимальная длина соломинки будет равна высоте столба жидкости, гидростатическое давление которого составит 1 атм. (98 066,5 Па). Для воды, плотность которой равна 1000 кг/м, максимальная длина соломинки составит примерно 10,3 м. Но поскольку давление водяных паров при температуре +27°C составляет 3536 Па, вода начнет кипеть прежде, чем вы создадите абсолютный вакуум. Поэтому максимальное вакуумметрическое давление, которое можно создать, равно: 101 325 — 3536 = 97 789 Па, а это значит, что для воды максимальная высота соломинки равна 9,97 м. С безалкогольными напитками дело обстоит сложнее, поскольку в условиях вакуума растворенный углекислый газ начнет «выкипать» из раствора. Медленно потягивая напиток через соломинку, сначала будете поглощать углекислый газ и лишь потом, когда газа не останется, доберетесь до самого уже выдохшегося напитка. Если будете потягивать очень быстро, то, возможно, вам удастся вытянуть напиток через соломинку до того, как СO2 выделится и образует пузырьки. Но более вероятно, что вам достанутся пена и пузырьки СO2, которые можно будет высосать в соломинку на гораздо большую высоту, чем жидкость, потому что эффективная плотность пенистой смеси ниже, чем плотность чистой жидкости. При средней скорости высасывания пузырьки пены сливаются и, как следствие, высота столбика будет ниже. Точный ответ можно дать, если знать, какое количество растворенного CO2 вы хотите оставить в своем напитке и какова максимальная скорость, с которой вы способны его высасывать. Вам также понадобится нечто более прочное, чем обычная соломинка, потому что пластиковые трубочки не выдерживают умеренных вакуумметрических давлений.
Саймон Айверсон (химико-технологический факультет Ньюкаслского университета, Австралия
Потягивая напиток через очень длинную пластиковую трубку с толстыми стенками, 15-летние ученики способны поднять столбик жидкости на высоту 2 м. Затем, попеременно всасывая, зажимая трубку языком, делая вдох и вновь всасывая, они легко поднимают столбик на высоту 4 м. Это их максимальный результат. Чтобы его увеличить, можно еще попробовать встать на стремянку, установленную на самом верху лестничного колодца, но это не очень удачная идея, если под твоей опекой находится класс из 30 человек. Полагаю, 4 м — это предел. Во рту давление снижается настолько же, насколько оно снижается в верхней части трубки. В связи с этим высасывание жидкости становится проблематичным, так как трудно преодолеть внешнее давление и оторвать язык от края трубки. Также нельзя не учитывать внутреннее давление в легких. Оно может резко упасть, когда горло у вас открывается и вы выдыхаете воздух в полость трубки. Чтобы этого не произошло, лучше вовремя остановиться.
Кит Шерратт (Ноттингем, Великобритания)
Не переусердствуйте, проверяя предел своих возможностей при высасывании жидкости. Во-первых, есть опасность поперхнуться. Во-вторых, при сильном всасывании во рту могут образоваться геморрагические пузырьки. Не далее как пару десятков лет назад в пустыне Калахари членам племени кунг порой приходилось высасывать воду из узких отверстий в камнях. В засушливое время года мужчины мастерили из камыша длинные соломины, высасывали воду из земли на всю длину соломины и сплевывали жидкость в общинный чан, чтобы остальные могли ею пользоваться.
Джон Ричфилд (Сомерсет-Уэст, ЮАР)
Сила тока
Объясните, пожалуйста, каким образом антистатики предотвращают скопление статического электричества на одежде?
Статическое электричество — это дисбаланс электрического заряда: нехватка или избыток электронов на поверхности материала. Обычно оно возникает при накоплении электрических зарядов в результате трения. Когда два материала соприкасаются, а потом отделяются друг от друга, между ними происходит обмен электронами: на одном остаются положительные заряды, на другом — отрицательные. В результате трения между двумя материалами процесс разделения зарядов протекает интенсивнее. При нормальных атмосферных условиях такие ткани, как хлопок и шерсть, имеют относительно высокое содержание влаги, наделяющей эти материалы некоторой проводимостью. Происходит отвод электрических зарядов, и статическое электричество накапливается. Но синтетические материалы в условиях низкой влажности имеют высокое поверхностное сопротивление, что препятствует рассеиванию заряда. Слой антистатика попросту снижает электрическое сопротивление поверхности ткани.
Пил Томпсон (Туикнем, Великобритания)
Накопление статического электричества на одежде вызвано трением ткани о ткань, ткани о тело и даже ткани о воздух и зависит от типа ткани, из которой сшита одежда, а также от степени влажности: чем выше влажность, тем меньше заряд. Такие ткани, как вискоза, шелк, шерсть, хлопок и лен, обладают высокой влагопоглощающей способностью (при данной относительной влажности окружающей среды их волокна впитывают большее количество влаги, чем другие материалы) и небольшим электростатическим зарядом. Такие волокна, как полиэфир, акрил и полипропилен, обладают низкой влагопоглощающей способностью и большим электростатическим зарядом. Антистатические средства бывают двух видов. Первые состоят из молекул, содержащих полярные группы, в которых заряд распределен неравномерно. Эти полярные группы действуют как проводники, рассеивающие статическое электричество. Второй вид — гигроскопические, или влагопоглощающие, вещества, также помогающие текстильным изделиям рассеивать статическое электричество. При повышенном содержании влаги на поверхности материала или в самих волокнах повышается электрическая проводимость ткани, что позволяет ей отводить заряд. Текстильщики-технологи могут создавать волокна и ткани, минимизирующие статическое электричество. В коврах небольшой процент волокон (до 3 %) имеют углеродную основу, отводящую статический заряд. При изготовлении ковров и обивочных тканей с этой же целью в латекс или в термоплавкий материал подложки добавляют ламповую сажу. В коврах, сотканных из нитей штапельного волокна, также присутствует небольшой процент волокон либо из нержавеющей стали, либо с алюминиевым покрытием, либо с напылением из серебра, уменьшающих статическое электричество. Однако количество такого типа волокон должно составлять менее 5%, иначе изделие приобретет сероватый оттенок.
Боб Вагнер (Плимут-Митинг, США)
В антистатиках содержится тип соединения, называемый сурфактантом. Это катионогенное поверхностно-активное вещество, состоящее из длинных молекул (как масло или жир) с положительным зарядом на одном конце. Зачастую такие сурфактанты представляют собой соединение аммония, в котором атом азота окружен четырьмя органическими группами. В процессе стирки отрицательный заряд, образующийся на поверхности ткани, притягивает к себе положительный конец молекул сурфактанта. Эти длинные молекулы маслянистого вещества смазывают волокна и таким образом предотвращают трение, вызывающее скопление статического заряда. В результате ткань легче гладится, становится более мягкой и ворсистой.
Ричард Филипс (Фейетвилл, США)
Деформирующий мед
Почему ломтик хлеба, смазанный медом, постепенно приобретает вогнутую форму?
Моя жена уверяет, что ее хлеб с медом не успевает покорежиться. Как бы то ни было, для тех, кто предпочитает неспешно грызть свой смазанный медом хлеб, я представляю простое объяснение. В хлебе примерно 40 % воды, а мед — это концентрированный раствор, в котором содержится около 80 % саxapa. Это значит, что мед вытягивает из хлеба воду. Налицо явление, называемое осмосом. Теряя воду, хлеб усыхает, но только с той стороны, где смазан медом. Поэтому ломтик и прогибается. Конечно, хлеб вряд ли покорежится, если вы мед намажете на сливочное масло. Масло образует водонепроницаемый слой, защищающий хлеб от обезвоживания медом.